Инициирование аномалий. Сход ледника Колка в 2002 году - читать онлайн бесплатно, автор Михаил Стефанович Галисламов, ЛитПортал
bannerbanner
Полная версияИнициирование аномалий. Сход ледника Колка в 2002 году
Добавить В библиотеку
Оценить:

Рейтинг: 5

Поделиться
Купить и скачать
На страницу:
5 из 10
Настройки чтения
Размер шрифта
Высота строк
Поля

Главным компонентом глобальной климатической системы является Мировой океан. За последние 45 лет XX века происходило возрастание теплосодержания верхнего слоя всех океанов. Отсюда следует приоритетность анализа изменчивости этого компонента. В арктической климатической зоне потепление происходит быстрее и масштабней, чем в других регионах мира. Вероятность того, что рассматриваемые аномалии теплосодержания обусловлены лишь внутренней изменчивостью климатической системы, по мнению [48], не превосходит 5%, что предполагает реальность антропогенного характера изменений климата.


9.3. Соленость вод в Амеразийском и Евразийском суббассейнах

Переход от холодной эпохи к потеплению, произошедший во второй половине века, сопровождался осолонением поверхностных вод на значительной части Арктического бассейна. Авторы [63] эти связывают с усилением циклонической деятельности в этом регионе. Основными причинами изменений в Арктике состояния морского ледяного покрова называются естественные факторы, которые могут во много раз превышать антропогенное воздействие на климат.

С 2007 г. в Арктическом бассейне СЛО складывается аномальная структура поверхностной солености воды. В Амеразийском суббассейне наблюдаются отрицательные солености. В Евразийском суббассейне по всей акватории происходит слабое осолонение поверхностного слоя. Положительными аномалиями солености (до 5 ‰) характеризовались поверхностные слои в Карском море и море Лаптевых [53]. Зона осолонения в этом регионе сохранилась до осени. На глубоководной акватории Амеразийского суббассейна СЛО летом 2011 г. наблюдалось распреснение в поверхностном слое (4–5 ‰).

Летом 2008 г. солености в поверхностном слое СЛО имели особенности. Отрицательные аномалии содержания солей в морской воде (распреснение) отмечалось на большей части акватории Амеразийского суббассейна, в отдельных районах они достигали –2 ‰. В то же время аномально соленым был поверхностный слой Евразийского суббассейна. В Евразийском суббассейне от пролива Фрама (φ = 80° с. ш., λ = 0° в. д.) вдоль материкового склона до моря Лаптевых (φ = 76,269° с. ш., λ = 125,64° в. д.) отмечалось осолонение поверхностного слоя. В северной части моря Лаптевых положительные аномалии солености достигали +2 ‰. В целом поверхностный слой Амеразийского суббассейна был аномально распресненным, а у Евразийского суббассейна – аномально соленым. Контраст солености между двумя суббассейнами достигал 4 ‰ [62]. В Карском море увеличение солености по сравнению с 2007 г. достигало 4 ‰. Нулевая изолиния аномалии солености проходила от Новосибирских островов (φ = 75° с. ш., λ = 145° в. д.) на север вдоль хребта Ломоносова (φ = 88,031° с. ш., λ = 133,616° в. д.).

В Амераазийском суббассейне, начиная с 90–х годов XX века, наблюдалось уменьшение средней солености воды. В прибрежной зоне Амеразийского суббассейна значения аномалий температуры поверхностного слоя были на 1–2 °С ниже, чем в евразийской части Арктического бассейна. На глубоководной акватории Амеразийского суббассейна СЛО летний период 2011 г. наблюдалось распреснение в поверхностном слое (4–5 ‰). В Евразийском суббассейне, граничащим с Амеразийским, неизвестные факторы вызывают противоположные процессы. Летом 2011 г. положительные аномалии солености в нем достигали величины 1,0–1,5 ‰ [53].

В первой декаде 2012 г. в Амеразийском суббассейне наблюдали отрицательную аномалию солености, сравнимую с аномалиями солености зимой 2006–2007 годов. Зона влияния распресненных вод была ограничена с севера – φ = 74–75° с. ш., с запада – λ = 70° в. д. (по данным экспедиции «Ямал–Арктика 2012»). Лето 2012 г. отмечалось положительными аномалиями температуры воды. Аномалии температуры воздуха для широтной зоны φ = 70–85° с. ш. в 2012 г. составили летом +2,0 °С, осенью +3,6 °С [60]. В III квартале 2012 г. в центральном районе Канадской глубоководной котловины, в районе хребта Менделеева (φ = 80° с. ш., λ = 178° з. д.) и в районе восточного склона хребта Ломоносова распреснение поверхностного слоя достигло максимальной величины. Отрицательные аномалии солености в этих областях достигали 2–3 ‰ [53].

В 2012 г. в зоне формирования положительной аномалии солености оказалась центральная часть Карского моря, максимальные значения которой достигали 5–6 ‰ [60]. В работе [53] представлены графики изменения состояния солености и температуры в поверхностном слое вод в Канадской котловине (φ = 75° с. ш., λ = 145° з. д.), построенные по данным наблюдений за последние 60 лет. На графиках [60, рис. 8] изменения температуры воды в морях и океанах видно, что до 1982 г. с течением времени температура незначительно, но снижалась, а соленость медленно росла. Начиная с 90-х годов XX века произошло резкое уменьшение солености от 30–31 ‰ до 26–27 ‰ – для зимнего периода, и от 29–31 ‰ до 24–25 ‰ – для летнего периода 2012 года. Соленость изменилась примерно на 4 ‰ зимой и на 5–6 ‰ летом. Потепление в Баренцевом море, по мнению авторов статьи, было вызвано влиянием притока теплых атлантических вод. Поскольку к северу от архипелага Земля Франца-Иосифа, на глубине 75–100 м температура вод атлантического происхождения была выше нормы на 1,5–2°C.

Данное умозаключение не достаточно корректно для Евразийского суббассейна, в котором средняя скорость роста температуры воды в 2 раза больше, чем в Амеразийском суббассейне, несущего теплые воды; в отдельных регионах поменялся тренд, вместо общего распреснения морских вод происходит увеличение солености. В глобальных объемах двух сопрягающихся суббассейнов температура воды и приземной атмосферы увеличивается, но в одном из них (в Амеразийском) наблюдают распреснение, тогда как в другом (Евразийском) происходит увеличение солености. Рост солености происходит на фоне повышения температуры окружающей среды и интенсивного таяния льда, который является источником распреснения морской воды.

Амплитуда солености в сезоне 2011-2012 гг. составила 2,98 ‰, что почти в 1,5 больше средней амплитуды для этого района в период 1950–1989 гг. Наблюдения за изменчивостью температуры и солености океана, зафиксированные полярниками на станции СП-39, дрейфовавшей южнее поднятия Альфа (φ = 84° с. ш., λ = 97° з. д.), оказались подобными. Максимум температуры на глубине 10 м здесь наблюдали во второй декаде июля. Летом 2012 г. в районе западного склона хребта Ломоносова (φ = 88° с. ш., λ = 134° в. д.) было зафиксировано осолонение поверхностного слоя. Положительная аномалия солености была порядка 1,5 ‰, а температура воды была ниже нормы. Буй ITP-48 в 2012 г. дрейфовал в сторону пролива Фрама (φ = 80° с. ш., λ = 0° в. д.). Соленость воды в районе дрейфа ITP-48 в 2012 г. изменилась от максимальной к минимальной между хребтом Ломоносова и Канадской котловиной на горизонте глубины 10 м, а разница температур между максимальным и минимальным значениями составляло 0,05 °С. Амплитуда солености в этом районе была в 4–5 раз больше средней климатической сезонной амплитуды для периода 1950–1989 гг. [53].

Температура поверхностных слоев океана изменялась с конца 1950-х годов, в верхних слоях происходило увеличение теплосодержания. Таяние льдов начинается с 1990-х годов, оно должно было привести к распреснению верхнего слоя вод Арктического бассейна. Криосфера содержит ~ 80% всех запасов пресной воды, включая все формы льда, снежный покров и вечную мерзлоту. По съемкам 2007 и 2008 гг. пресные речные воды к концу летнего периода уходили от устья Оби и Енисея на север, достигая мыс Желания. На фоне таяния ледников в Арктике в 2012 г., по границам РФ происходило распреснение вод Амеразийского и осолонение вод Евразийского суббассейна. Совокупность данных наблюдений ГМС береговой сети характеризует нетипичную реакцию Карского моря на происходящие изменения в природе. В Карском море и море Лаптевых соленость поверхностного слоя в 2012 г. характеризовалась большими положительными аномалиями. Если исходить из интенсивности таяния льдов и увеличения объема речных вод, впадающих в моря, то в них должен был проявить себя отрицательный тренд солености воды, но не положительный. Парадоксальность процесса заключается в том, что воды речного происхождения, распространяясь в Карском море, не создали отрицательную аномалию солености в поверхностном слое. Не типичное распределение солености ученые объясняют [53]: воздействием атмосферных процессов, которые сказались на формировании гидрологических условий в Карском море; изменением направления течения и смещением в восточном направлении фронтальной зоны морских вод, распресненных речным стоком. Утверждение не соответствует всей совокупности изменений происходящим в северной полярной области.

Аномалии, наблюдаемые в Арктическом бассейне, противоречат естественным процессам, протекающим в природе. В СЛО с 2007 г. складывается дипольная структура аномалий поверхностной солености. Большие отрицательные аномалии солености наблюдаются в Амеразийском суббассейне. Противоположная тенденция наблюдается в Евразийском суббассейне. По всей акватории происходит слабое осолонение поверхностного слоя. В Карском море и море Лаптевых в поверхностных слоях положительные аномалии солености увеличились до 5 ‰ [53]. Рост солености в Евразийском суббассейне, при одновременном распреснении Амеразийского суббассейна, должен был заставить ученых задуматься о причине противоположных процессов. Ожидание аргументированного ответа затянулось.

10. Ледовый покров над озером Восток в Антарктиде и появление открытой воды у Северного полюса

Гляциологические исследования в Центральной Антарктиде ученые СССР начали в  середине 1950-х годов. Советскими полярниками были основаны такие станции, как Пионерская, Восток-1, Комсомольская, Восток (16  декабря 1957 г.), Полюс недоступности, Советская. В настоящее времени продолжает функционировать лишь станция Восток. В 1970 г. начались гляцио-буровые работы на станции Восток и в ее окрестностях. В это время развивался такой метод палео-климатологии, как бурение скважин в полярных ледниках и изотопные исследования ледяных кернов. Реконструкции климата по данным трех фирновых кернов глубиной до 70 м в районе станции Восток показали, что за последние 2 000 лет температура воздуха в этом районе на временных отрезках порядка сотен лет была стабильной и без значимых трендов. Средняя скорость снегонакопления в последние 200 лет выросла с 1,8 г/(см²)⋅год до 2,1 г/(см²)⋅год. По данным инструментальных измерений за последние 50 лет средняя скорость снегонакопления составляет 2,26 ± 0,1 г/(см² )⋅год и является самой большой за два тысячелетия [64].

В последующем были пробурены 4 скважины глубиной до 2546 м. Прекращение бурения связано с авариями в скважинах. В феврале 1990 г. была забурена скважина 5Г («пятая глубокая»). Из-за аварии ее бурение было прервано в 1991 г. на глубине 2503 м. и возобновлено с отметки 2232 м (скважина 5Г-1) [64]. В январе 1998 г. на глубине 3623 м бурение было остановлено. Скважина 5Г-1 на глубине 3537 (3539) м вошла в слои конжеляционного льда, который образовался из воды озера [65]. В керне скважины 5Г-1 в интервале 3310–3538 м расположен лед атмосферного происхождения, характеризующийся нарушенным залеганием слоев. К основным признакам, указывающим на водное происхождение этого льда, ученые относят резкое изменение изотопного состава и низкое содержание газа в ледяном керне (в 10–103 раз меньше, чем во льду атмосферного происхождения). В октябре 2007 г. из-за аварии на глубине 3666 м бурение скважина 5Г-1 было прекращено. Бурение новой скважины (5Г-2) было начато с глубины 3580 м. Скважина 5Г-2 достигла 5 февраля 2012 г. поверхности подледного озера Восток. Вертикальная мощность ледника, рассчитанная по длине ствола скважины, составила 3758 м. Исследования показали, что керны из стволов скважин 5Г-1 и 5Г-2 в интервале 3 538–3 769  м сложены льдом конжеляционного типа, сформировавшимся в результате медленного намерзания озерной воды на подошву ледника. Ученые попутно установили, что современная концентрация СО2 в атмосфере в 1,5 – 2 раза превышает пределы концентрации этого газа за последние полмиллиона лет [64]. Предполагается, что на дне озера действуют активные геотермальные источники. Озеро насыщено атмосферными газами, в  том числе кислородом, концентрация которого может в  десятки раз превышать значения, характерные для наземных водоемов. Вблизи контакта ледника с замерзшей водой озера Восток (на глубине 3538 м) возраст льда атмосферного происхождения достигает 1,2 млн. лет. Однако в изотопном профиле керна со станции Восток неискаженный климатический сигнал наблюдается только до горизонта 3310 м (возраст льда около 410 тыс. лет) [66]. В толще ледника обнаружены структурные и геохимические признаки нарушения первоначальной последовательности залегания ледяных слоев. В работе акцентируют внимание на том, что если концентрация парниковых газов и глобальная температура в прошлом изменялись параллельно, то из анализа ледяных кернов следует: за последние 100 лет содержание газов резко возросло, а изменения температуры не выходят за рамки ее естественных флуктуаций.

Минеральные и газовые включения встречаются только в верхней части толщи конжеляционного льда до глубины примерно 3618 м. По расчетам, выполненным с помощью математической модели, перемещение ледника от западного берега озера до станции Восток продолжалось примерно 40 тыс. лет. В соответствии с этой гипотезой, возраст конжеляционного льда в районе скважины с ростом глубины его залегания уменьшается от 40 тыс. лет (на контакте с атмосферным льдом) до нуля (на контакте с озёрной водой). Предполагается, что именно в этой части подледникового водоема (глубина залегания слоя 3537 – 3618 м) формируется 81-метровый слой озерного льда, содержащий видимые минеральные включения донных осадков озера. Плотность дислокаций в образцах льда с глубин 3538 – 3610 м на порядок ниже плотности дислокаций в вышележащей толще ледникового льда. Петрографические исследования озерного льда, которые проводились сначала по керну скважины 5Г-1, а затем по керну скважины 5Г-2 (начиная с глубины 3600 м), показали: размер кристаллов озерного льда увеличивается по мере приближения к контакту лед–вода, а не наоборот, как следовало ожидать, исходя из гипотезы о росте кристаллов после льдообразования.

В 2008 г. были завершены радиолокационные исследования по определению береговой линии оз. Восток и составлена подробная карта. Согласно полученным результатам, площадь подледникового оз. Восток составляет 15790 км² [67]. Подледниковые водоемы, расположенные вокруг озера Восток, находятся выше уровня его водного зеркала. Тело озера полностью располагается в желобе коренных пород и при этом его водная поверхность располагается ниже уровня моря. Береговая линия в западной, южной и северной частях озера осложнена многочисленными мысами и бухтами. Восточный берег озера выдержан в субмеридиональном направлении приблизительно вдоль λ = 107° в. д. на расстояние около 230 км и далее в северо-западном направлении на расстояние около 65 км [68]. Многочисленные исследователи из разных стран указывают на то, что в данный момент озеро Восток изолировано от других водных объектов [69].

11. Содержания озона в атмосфере полярных областей в последние десятилетия

Температура на Земле повышается в среднем на 0,17 °С за десятилетие, т. е. за 100 лет она могла бы подняться на 1,7 °С. Динамика повышения температуры приземных слоев атмосферного воздуха по регионам не одинаковая. На территории Евразии, занятой современной Россией, это повышение за аналогичные сроки в 2,5–3 раза больше [70]. В России летом 2021 г. происходили разрушительные лесные пожары и наводнения, которые, как отметил президент Владимир Путин, в большой степени спровоцированы изменением климата [71], что демонстрируют важность системного подхода к решению вопросов о связях изменений в климате и окружающей среды. По данным Госгидромета представлен график аномалий температуры приземного воздуха на территории РФ за 1961–1990 гг., как отклонение от средней величины, который динамику изменений и потепление на 1.4 °С [49, рис. 2]. За тот же период времени средняя температура в Северном полушарии увеличилась на 0,8 °С, а в Южном полушарии – на 0.4 °С.

Озон (О3) защищает все живое на Земле от жесткого ультрафиолетового излучения Солнца. Он присутствует в воздухе в виде одной из малых атмосферных составляющих на высотах до 90 км от поверхности Земли. Общее содержание озона (ОСО) является важнейшей характеристикой озонового слоя, которая определяет поглощение ультрафиолетового (УФ) излучения Солнца в области длин волн 290–315 нм (так называемая УФ-Б область). Озоносфера располагается в приполярных широтах на высоте 10 км от поверхности Земли, вблизи экватора – на высоте до 50 км. Основная масса озона рассредоточена в диапазоне высот 15–30 км [72]. Максимальная концентрация О3 отмечается на высоте 20–25 км. В атмосфере озон находится в очень разреженном состоянии. Количественно ОСО выражают приведенной толщиной слоя озона, которая получилась бы, если весь озон, содержащийся в атмосфере, привести к нормальному давлению и температуре 0 °С. Средняя толщина слоя озона вокруг земного шара равна 3 мм, но он может изменяться от 1 мм (в Антарктиде) до 6 мм (над Дальним Востоком). В качестве единицы измерения газообразного озона в вертикальном столбе атмосферы используется единица Добсона (е.Д.), соответствующая толщине слоя. Толщине озонового слоя в 1 мм соответствуют 100 е.Д. Толщина озонового слоя изменяется в широких пределах (от 90 до 600 е.Д.) при среднем глобальном ОСО в 290 е.Д.

Заметную убыль озонового слоя над Антарктидой впервые обнаружили в 1957 году. Измерения Добсона на станции Нalley-Bay (Великобритания) с координатами (75° ю.ш., 26° в. д.), показали: весной наблюдается уменьшение ОСО, которое впоследствии восстанавливалось. Межгодовое уменьшение весенних значений общего содержания озона было определено по отрицательным трендам ОСО на трех антарктических станциях: Нalley-Bay (φ = 75°S, λ = 26°W) за период (1957-1968 г.г.), Syowa (φ = 69°S, λ = 40°E) – с 1965 по 1976 г. и South Pole (90°S) – с 1962 по 1972 г. За 11 лет по результатам измерений на первой станции значения ОСО уменьшились на 6,3%, на второй уменьшение ОСО составило 6,6%, а на третьей станции за 10 лет – на 5,4% [73]. Весной 1984 г. над антарктической станцией Халли-Бей английские ученые впервые обнаружили озоновую дыру диаметром более 1000 км. Устойчивые тенденции уменьшения ОСО над Антарктидой, наиболее отчетливо выражены в весенние антарктические месяцы (сентябрь – ноябрь), регистрируются со второй половины 1970-х гг. В 2002 г. озоновая дыра над Антарктикой также развивалась весной, но не по стандартному сценарию. Разрушение циркумполярного вихря произошло в начале весны и площадь «дыры» была меньше, чем в предыдущие годы. С 1988 по 2007 гг. озоновая дыра в Антарктике увеличилась с 8 до 25 млн. км².

В северной полярной области в период с 1973 г. и до середины 1990-х гг. отрицательный тренд содержания озона в атмосфере проявился в основном на западных станциях Российского Севера – Мурманске, Печоре, острове Хейса и Игарке [74].По данным российских озонометрических станций с конца 1980-х гг. началось сильное и устойчивое уменьшение ОСО. Оно продолжалось до середины 1990-х, а затем наступил период резких колебаний озона (1997–2002 гг.), который по-разному проявлялся в различных регионах страны. На станциях в восточной части Арктики данных недостаточно, чтобы надежно судить о наличии какого-либо тренда общего содержания озона (ОСО). График изменения среднесуточных значений общего содержания озона в период наблюдений 2003–2005 гг. [74, рис. 1 а] построен на данных исследований полученных с СП-32 (2003 г.), научно-исследовательское судно «Академик Федоров» (2004, 2005 гг.) и СП-33 (2005 г.). Наблюдения в Центральном Арктическом бассейне в течение 2003, 2004, 2005 гг. зарегистрировали уменьшение ОСО по величине (с апреля по сентябрь) почти в два раза. Результаты наблюдений на СП-32 и СП-33 показывают, что в теплый период года ОСО уменьшалось с 470 до 250 е. Д. Более низкий уровень ОСО (175 е. Д.) наблюдался во время рейса судна «Академик Федоров» в середине сентября 2005 года. Обращает на себя внимание достаточно быстрое восстановление ОСО в зимний период следующего года. Заметим, что в январе наблюдения практически не проводятся. По мнению авторов [74], глубокое понижение содержания озона, начиная со второй половины июля 2005 г. было обусловлено характером внутригодовых изменений ОСО в Центральной Арктике. Поверхностное заключение не предполагает причинной связи изменения содержания озона в атмосфере с другими природными аномалиями.

Области низкого ОСО наблюдались во всех широтных зонах Южного и Северного полушарий. В средних широтах Северного полушария локальными уменьшениями ОСО на 30-50 % выделялись регионы Западной Европы и Восточной Сибири [75]. Продолжительность существования данных озонных аномалий в среднем составляла от нескольких дней до 1 месяца, а площадь – более 500 км². До введения запрета на производство веществ, разрушающих озон, озоновый слой на средних широтах в Северном полушарии истощался на 3,4% за 10 лет, в Южном – на 3,7%. После введения запрета, истощение продолжает наблюдаться: в Северном полушарии – на 2,9%, в Южном – на 3,0% за 10 лет [76]. Существуют несколько гипотез относительно химических и динамических механизмов образования озоновых дыр. В химическую антропогенную теорию, не укладывается известный факт: теория не может объяснить увеличение содержания стратосферного озона в отдельных географических регионах.

Динамика стратосферных воздушных потоков, которые создают циркумполярный вихрь, не дает правдоподобного объяснение механизму вращения и расширения озоновой дыры над Антарктидой. Современные гипотезы не могут дать ответа на вопрос: почему дыра образуется в Южном полушарии, когда фреоны вырабатываются в Северном полушарии. По мнению академика А.П. Капицы [77], факты показывают, что природные, естественные причины могут быть главным фактором возникновения озоновых дыр. Опасность озоновых дыр для человечества значительно преувеличена, огромные затраты на реконструкцию промышленности, которые лягут на плечи потребителя – не оправданы.

Академик Кондратьев К.Я. утверждает, что в международных документах, содержащих анализ современных представлений о климате, научные выводы, определялись не доказательством и соответствующими дискуссиями, а всеобщим согласием (консенсусом) по тем или иным конкретным вопросам [48]. В публикации отмечается: данные наблюдений в США, в Арктике и результаты СВЧ-спутникового дистанционного зондирования не содержат отчетливого существования антропогенно обусловленного подтверждения «глобального потепления»; если усиление парникового эффекта атмосферы предполагает удвоение концентрации СО2 в атмосфере, что составляет около 4 Вт/м², то неопределенности, связанные с учетом роли атмосферного аэрозоля и облаков, а также с введением «потоковой поправки» при численном моделировании климата, достигают радиации десятков и даже 100 Вт/м²; результаты численного моделирования климата, обосновывающие гипотезу «парникового глобального потепления» и якобы согласующиеся с данными наблюдений, представляют собой не более, чем подгонку к данным наблюдений. По данным численного моделирования даже полная реализация рекомендаций протокола Киото, обеспечит снижение среднегодовой приземной температуры воздуха (ПТВ) на несколько сотых долей градуса [48].

Весной 2011 г. в Северном полушарии впервые образовалась озоновая дыра, сопоставимая по площади с дырой, возникающей в Южном полушарии. Данное событие произошло на фоне общего постепенного восстановления озона и уменьшения содержания хлорфторуглеродов в атмосфере Земли. Некоторые эксперты возражали против хлорной теории и выдвигали альтернативные гипотезы. Ряд российских ученых (Кароль И.Л., Александров Э.Л., Кондратьев К.Я.) с недоверием относились к «фреоновой» гипотезе. Капица А.П. утверждал, что модные теории глобального потепления и озонных дыр – не более, чем псевдонаучные мифы [78]. Крученицкий Г.М. назвал Монреальский протокол «документом, не имеющим под собой научного основания, грандиозной аферой с финансовыми целями».

12. Возможности космического воздействия на климат Земли

В работе [79] утверждают, что проблема глобального потепления не может быть полностью объяснена антропогенным фактором, т. е. воздействием хозяйственной деятельности человека. Увеличение среднеширотных температур воздуха в пределах одного градуса за столетие при значительной межгодовой изменчивости не является достаточно убедительным доказательством современного потепления, вызванного антропогенными факторами. В качестве альтернативных гипотез рассматривают влияние имеющих разную природу периодичностей – от изменений планетарной орбиты до увеличения частоты извержения вулканов.

На страницу:
5 из 10

Другие электронные книги автора Михаил Стефанович Галисламов