Оценить:
 Рейтинг: 0

Трудно быть человеком

Год написания книги
2013
Теги
<< 1 ... 6 7 8 9 10 11 >>
На страницу:
10 из 11
Настройки чтения
Размер шрифта
Высота строк
Поля

В конце концов я добрался до длинной, спокойной, обсаженной деревьями улицы под названием Сторизвэй и доехал по ней до самого колледжа. Прислонил велосипед к стене и зашагал к парадному входу в самое большое из трех зданий – просторное, в три этажа высотой, относительно современной земной архитектуры. При входе я встретил женщину с ведром и шваброй, мывшую деревянный пол.

– Здравствуйте, – сказала она. Похоже, она меня узнала, хотя нашей встрече явно не обрадовалась.

Я улыбнулся. (В больнице я выяснил, что первой нормальной реакцией на приветствие является улыбка. А не плевки.)

– Здравствуйте. Я здесь преподаю. Профессор Эндрю Мартин. Знаю, это звучит ужасно странно, но я попал в небольшую аварию – ничего серьезного, просто кратковременная потеря памяти. Одним словом, я взял паузу в работе, но мне необходимо попасть в кабинет. В мой кабинет. Дело сугубо личное. Вы случайно не знаете, где мой кабинет?

Пару секунд женщина меня разглядывала.

– Надеюсь, вы не сильно пострадали, – проговорила она. Ее надежда не показалась мне особенно искренней.

– Нет. Не сильно. Просто упал с велосипеда. Простите, но я несколько ограничен во времени.

– Вверх, прямо по коридору. Вторая дверь слева.

– Спасибо.

На лестнице мне встретилась другая женщина. Седая, лицо по человеческим меркам смышленое, на шее очки на шнурке.

– Эндрю! – сказала она. – Боже мой. Как ты? И что ты здесь делаешь? Я слышала, ты заболел.

Я внимательней к ней присмотрелся. Много ли она знает?

– Да, немного ударился головой. Но теперь уже все нормально. Честно. Не волнуйся. Меня осматривали, все в порядке. Я здоров как бык.

– О, – недоверчиво выдохнула она. – Понятно, понятно.

Тут я с легкой и необъяснимой тревогой задал главный вопрос:

– Когда ты последний раз меня видела?

– Неделю назад, не меньше. Наверное, в прошлый четверг.

– И с тех пор мы больше не связывались? По телефону? По электронной почте? Еще как-нибудь?

– Нет. Нет, а зачем? Ты меня заинтриговал.

– О, пустяки. Все из-за удара головой. Не могу собраться с мыслями.

– Ах, это ужасно. Уверен, что стоило сюда приезжать? Может, лучше было остаться дома, в постели?

– Да, пожалуй. Заберу кое-что и сразу домой.

– Хорошо. Надеюсь, ты скоро поправишься.

– О, спасибо!

– Пока.

Она пошла дальше, не догадываясь, что только что избежала верной смерти.

У меня были ключи, и я ими воспользовался. Зачем делать что-то откровенно подозрительное, если тебя могут увидеть?

И вот я оказался внутри его – моего – кабинета. Не знаю, чего я ждал. В этом-то и заключалась главная проблема: чего мне ожидать. У меня отсутствовала точка отсчета – незнакомым было все. Мне остро недоставало информации о предшествующем положении дел, по крайней мере здесь.

Итак: кабинет.

Статичный стул у статичного стола. Окно с опущенными занавесками. Книги, заполняющие почти три стены. В горшке на подоконнике – растение с коричневыми листьями, более мелкое, чем то, которое я видел в больнице, и нуждающееся в поливе. На столе фотографии в рамках посреди кучи бумаг и невообразимых канцелярских принадлежностей. А в центре всего этого – компьютер.

Времени оставалось мало, поэтому я сел и включил его. Он ненамного превосходил тот, домашний.

Земные компьютеры еще не перешагнули доинтеллектуальной ступени своего развития и позволяли влезать в себя и вытаскивать все, что вздумается.

Я быстро нашел, что искал. Документ назывался «Дзета».

Открыв его, я увидел двадцать шесть страниц сплошных математических символов. Ну, или почти. Вначале шло короткое словесное вступление:

ДОКАЗАТЕЛЬСТВО ГИПОТЕЗЫ РИМАНА

Как известно, доказательство гипотезы Римана является важнейшей из нерешенных задач математики. Решить ее означало бы произвести революцию в применении математического анализа, открыть множество новых способов преобразования нашей жизни и жизни будущих поколений. Ведь не что иное, как математика, стоит у истоков цивилизации. Первым тому подтверждением служат архитектурные успехи создателей египетских пирамид, а также важные для архитектуры астрономические наблюдения. С тех пор наше математическое развитие ушло вперед, но его поступь никогда не была ровной.

Подобно эволюции живых существ путь математики состоял из головокружительных взлетов и падений. Если бы Александрийскую библиотеку не сожгли дотла, вполне возможно, что мы полнее и быстрее развили бы достижения древних греков и уже во времена Кардано, Ньютона или Паскаля впервые отправили человека на Луну. Кто знает, чего бы мы достигли. И какие планеты терраформировали и колонизировали бы к началу двадцать первого века.

Каких высот достигла бы медицина. Не будь в нашей истории темных веков, этого блэкаута, мы, возможно, уже нашли бы способ не стареть и не умирать.

В наших кругах принято подшучивать над Пифагором и его мистическим учением, основанным на идеальной геометрии и других математических абстракциях. Но если вообще говорить о религии, то религия математики выглядит идеальной, ибо если Бог существует, то кто он, если не математик?

Сегодня, пожалуй, мы можем сказать, что поднялись чуть ближе к нашему божеству. В самом деле, у нас появился теоретический шанс повернуть время вспять, возродить ту древнюю библиотеку и встать на плечи великанов, которых не было.

Простые числа

Текст был до конца выдержан в том же восторженном духе. Я чуть больше узнал о Бернхарде Римане, болезненно застенчивом немецком вундеркинде, жившем в девятнадцатом веке. Мальчик в раннем возрасте проявил неординарные математические способности, потом была блестящая научная карьера и череда нервных срывов, омрачивших его зрелые годы. Позже я узнал, что это одна из ключевых проблем, преграждающих людям путь к числовому пониманию, – у них просто не выдерживает нервная система.

Простые числа сводят людей с ума в буквальном смысле слова, тем более что данная область полна загадок. Человек знает, что простое число есть целое число, которое делится только на единицу и на само себя, а дальше начинаются всевозможные проблемы.

Например, людям известно, что простых чисел столько же, сколько чисел вообще, ведь количество и тех и других бесконечно. Но этот факт не укладывается в человеческой голове, ведь понятно же, что всех чисел вместе должно быть больше, чем только одних простых. Так что некоторые люди после безуспешных попыток осмысления данного парадокса совали в рот пистолет, нажимали на спуск и вышибали себе мозг.

Люди также поняли кое-что насчет распределения простых чисел. Тут как с воздухом на Земле: чем выше поднимаешься, тем их меньше. К примеру, в промежутке от 0 до 100 помещается 25 простых чисел, от 100 до 200 уже только 21 простое число, а от 1000 до 1100 всего 16. Однако в отличие от земного воздуха, как бы высоко мы ни взобрались по числовой оси, поблизости все равно окажутся простые числа. Например, 2097593 – простое число, и между ним и, скажем, 4314398832739895727932419750374600193 их найдутся еще миллионы.

Тем не менее человек искал закономерность в на первый взгляд произвольном порядке распределения простых чисел. Ясно, что их частота уменьшается, но почему? Человечество билось над этой задачей, сознавая, что, решив ее, оно сделает огромный шаг вперед, поскольку простые числа суть основа математики, а математика есть основа знания.

Люди постигли и другие явления. Атомы, например. У них есть машина под названием спектрометр, позволяющая им видеть атомы, из которых состоит молекула. Но они не понимали простых чисел так, как понимали атомы. И чувствовали, что не поймут, пока не разберутся, почему простые числа распределяются так, а не иначе.

И вот в 1859 году угасающий от тяжелой болезни Бернхард Риман представил Берлинской академии наук гипотезу, которой суждено было стать самой изучаемой и знаменитой в мировой математической науке. В его работе утверждалось, что закономерность существует, или по меньшей мере она существует для первой сотни тысяч простых чисел. Формулировка была прекрасной, чистой и основывалась на так называемой дзета-функции – своего рода логической машине, сложного вида кривой, с помощью которой удобно исследовать свойства простых чисел. Подставляешь в нее числа, и те выстраиваются в порядок, которого раньше никто не замечал. Итак, закономерность. Простые числа распределяются не наобум.

Зал ахнул, когда Риман – в приступе невероятного волнения – объявил об этом своим элегантно одетым бородатым коллегам. Люди искренне поверили, что выходят на финишную прямую и еще при их жизни появится доказательство, работающее для всех простых чисел. Однако Риман только нащупал замок, но ключа не нашел, а вскоре после выступления умер от туберкулеза.

Чем больше проходило времени, тем отчаяннее велись поиски решения. Другие математические головоломки – такие как Великая теорема Ферма и гипотеза Пуанкаре – решились своим чередом; доказательство гипотезы давно почившего немца осталось последней и самой трудной задачей. Задачей, равносильной тому, чтобы увидеть атомы в молекулах или создать периодическую систему элементов. Задачей, которая в конечном итоге даст людям суперкомпьютеры, объяснит квантовую физику и сделает возможными межзвездные перемещения.
<< 1 ... 6 7 8 9 10 11 >>
На страницу:
10 из 11