функционируют как клетки-наблюдатели и клетки-убийцы, отсюда и их название «цитотоксические T-лимфоциты» (CTL). Они путешествуют по кровеносным сосудам и странствуют среди тканей по всему телу, выискивая чужеродные (не свои) клетки, с представленными вирусными белками на поверхности или подвергшиеся раковой трансформации. Обнаружив такие клетки, CD8
T-лимфоциты атакуют и уничтожают их. CD8
T-лимфоциты также испускают цитокины, такие, как интерферон-гамма (IFN-гамма) и фактор некроза опухолей альфа (ФНО-альфа), которые, обладая антивирусным действием, зараженные вирусом клетки не убивают
. T-клетки CD4
обычно играют другую роль: они высвобождают белки, которые помогают произведенным в костном мозге (но не получившим в тимусе иммунного «обучения») В-лимфоцитам дифференцироваться и производить антитела. CD4+ T-лимфоциты также помогают CD8
T-лимфоцитам и макрофагам в выборе их назначения
. Вдобавок CD4
T-клетки выделяют цитокины, которые тоже участвуют в избавлении от вирусной инфекции
. В некоторых случаях CD4
T-клетки могут участвовать в уничтожении инфицированных вирусом клеток.
T-лимфоциты используют свои рецепторы на поверхности клетки для взаимодействия с белковыми фрагментами или пептидами вирусных антигенов, прикрепленными к MHC на поверхности инфицированных клеток. Эти белки MHC в действительности переносят вирусные пептиды на поверхность клеток. Таким образом, T-лимфоциты ищут чужеродные антигены (в данном случае вирусные антигены – пептиды, произведенные из вирусного антигена) на поверхности зараженных клеток, на которых данный вирус паразитирует. Цитотоксические T-клетки, опознав инфицированную клетку как «чужеродную» (содержащую вирус), активируются и немедленно уничтожают зараженную клетку и/или высвобождают хемокины и цитокины, предупреждающие об опасности и вооружающие другие клетки организма хозяина на борьбу с вирусом. Кроме того, некоторые из этих цитокинов способны непосредственно препятствовать репликации вирусов. Такими средствами распространение вируса ингибируется, и очаг инфекции ликвидируется.
Иммунный ответ антител и цитотоксических T-клеток зависит от количества лимфоцитов, которые производятся кроветворными стволовыми клетками во время процесса образования крови. Антитела и CTL представляют две составляющие специфических реакций иммунной системы на антигены; оба они играют важную роль в борьбе с инфекцией. На самом деле вся иммунная система обладает врожденной гибкостью, благодаря которой соответствующий вклад каждой из ее составляющих варьируется в зависимости от природы инфицирующего вируса. Антитела в основном воздействуют на вирусы в жидкостных средах тела, и, соответственно, наиболее эффективно ограничивают их распространение в крови или цереброспинальных жидкостях, которые омывают головной и спинной мозг. Посредством этого антитела уменьшают содержание вирусов и снижают их способность инфицировать клетки, а следовательно, и количество зараженных клеток. Однако уничтожение инфицированных вирусом клеток и их удаление из организма – дело главным образом CTL. Расправляясь с инфицированными клетками, T-лимфоциты ликвидируют производство вирусного потомства. По мере того, как число вирионов сокращается, работа антител становится проще.
Прежде чем продолжить рассказ о T-лимфоцитах, я сделаю отступление, чтобы описать антитела, которые являются большими белковыми молекулами. Антитела производятся В-лимфоцитами, названными так из-за их источника – костного мозга
. В-клетки – это малые лимфоциты, находящиеся в состоянии покоя, с ядром, которое практически заполняет всю клетку; цитоплазмы в них незначительное количество. Когда вирус или вирусный антиген встречается со специфическим лимфоцитом с заранее подготовленным рецептором для антитела, которое соответствует белковой структуре вируса, В-лимфоцит получает стимул к делению, и количество цитоплазмы, заполняющей объем клетки, увеличивается, то есть В-лимфоцит дифференцировался в плазматическую клетку. В увеличившейся в объеме цитоплазме начинают производиться и немедленно отправляться в бой антитела, сконструированные для воздействия на тот самый вирус, который дал толчок к их секреции. Один-единственный В-лимфоцит в состоянии выпустить 100 миллионов антивирусных антител в час.
Антитела захватывают и нейтрализуют вирусы, используя один из нескольких механизмов
:
1) антитела могут предотвратить заражение, обволакивая внешний шиповидный белок вируса, который закрепляется на рецепторе клетки и дает возможность вирусу проникнуть внутрь;
2) антитела могут собрать вирусы вместе, в комок, так что количество нетто инфекционных частиц сократится;
3) с помощью комплемента/подкрепления – группы белков в крови – антитела могут лизировать (разрушать) вирусы
; и
4) антитела могут воздействовать на вирусные антигены на внешней мембране инфицированной клетки, чтобы ограничить производство или транскрипцию вирусных молекул внутри клетки, а следовательно, сократить количество создаваемых вирусов
.
Каждая молекула антитела воздействует на конкретный антиген или определенную вирусную молекулу-мишень. С помощью генов, дающих указания синтезу разнообразных антител, организм-хозяин может синтезировать их миллиарды. Развитие и поддержание в рабочем состоянии антивирусных антител и T-клеток происходило для того, чтобы они действовали согласованно для сдерживания вирусных инфекций. Однако при определенных вирусных заболеваниях (корь, грипп, ВИЧ, и т. д.) основная роль ложится на T-клетки, тогда как при взаимодействии с семейством энтеровирусов (полиомиелит, вирусы Коксаки) главная роль оказывается у антител. Трансфер антител может ограничить развитие текущей инфекции, например, при ВИЧ
. Это происходит, вероятнее всего, следующим образом. Во время инфекций с высокой вирусной нагрузкой на организм-хозяин вирус истощает антивирусные T-клетки. Применение антивирусных антител снижает вирусную нагрузку, тем самым восстанавливая функционирование T-клеток (облегчение истощенного состояния). После этого функционирующие антивирусные T-клетки могут уничтожить клетки-фабрики, реплицирующие вирус.
Теперь, возвращаясь к T-клеткам, следует отметить, что CD4
T-лимфоциты в некоторых особых случаях также действуют как цитотоксические клетки. И наоборот, хотя их основная роль – распознавать и уничтожать зараженные вирусом клетки, CD8
-клетки могут высвобождать растворимые молекулы, поэтому они обладают функцией хелперов/индукторов. В тканевой культуре одна клетка CD8
T-лимфоцита может убить до 10 и даже больше инфицированных вирусом клеток, захватив зараженную клетку и растворив ее, а затем, перейдя к следующей инфицированной клетке, повторить процесс и т. д. (Рисунок 3.1.) Далее в организме живых подопытных животных один CD8
T-лимфоцит, как показало наблюдение, единовременно связывал и разрушал до трех зараженных клеток-мишеней
. При этом очень важно то, что эти T-лимфоциты могут распознавать вирусные пептиды на инфицированных клетках прежде, чем закончится сборка вируса, и эффективно и быстро уничтожать эти клетки до образования вирионов.
РИСУНОК 3.1. Стадии уничтожения инфицированной вирусом клетки Т-лимфоцитами (a – c): (а) стрелка указывает на Т-лимфоцит, прикрепившийся к зараженной клетке; (с) инфицированная вирусом клетка сжалась, на ней появились волдыри или вздутия, и она погибла. Все эти стадии проходят менее, чем за две минуты. Бар, 14 мк; (d – f) прикрепление Т-лимфоцита к клетке-мишени, которую лимфоциты уничтожить не могут. Продолжительность всего процесса от (d) до (f) – более 30 минут. Бар, 8 мк. Микрофотография Клауса Хана и Майкла Б. А. Олдстоуна.
Когда организм впервые сталкивается с инфицирующим его вирусом или подвергается воздействию вакцины, содержащей вирусные антигены, он генерирует специфические антитела, а также цитотоксические лимфоциты, реагирующие именно на этот вирус. (Рисунок 3.2.) Реакция CTL-лимфоцитов начинается в первый день заражения и увеличивается в 10
–10
раз посредством удвоения примерно каждые 12 часов; пик роста достигается на седьмой-восьмой день после заражения.
РИСУНОК 3.2. С помощью дополнительных белков (протеинов) в крови или без них антитела могут обволакивать вирусы: (а) антитело воздействует на коронавирус, собирая вирусные части вместе в один ком; (в) антитело при помощи комплементарных агентов немедленно разрушает вирус; (с, вверху) ретровирус, (с, внизу) аренавирус. В процессе разрушения ретровируса в нем образуются дыры (стрелки на рисунке), однако лизис (разрушение/растворение) аренавируса запускает цепочку событий, которые в конечном итоге приводят к выходу вирусных нуклеиновых кислот во внешнее по отношению к вирусу пространство и за пределы защитной вирусной оболочки. Микрофотография из лаборатории Майкла Б. А. Олдстоуна
После этого количество клеток сокращается и удерживается на уровне 1–2 % всех генерируемых; такие клетки превращаются в клетки иммунной памяти
. Пик реакции антител наступает после реакции CTL-лимфоцитов, и чаще всего наиболее действенные антитела, нейтрализующие вирус, появляются на поздней стадии инфекции, обычно после того, как распространение вируса уже ограничено. Тем не менее сейчас такие антитела, особенно те, которые обладают широким диапазоном нейтрализующего вирусы действия (антитела широкого диапазона реагирования), представляют интерес из-за вирусных структур, которые они узнают. Для создания вакцин, предотвращающих начало инфекций, возбудителями которых являются быстро мутирующие и образующие квазивиды вирусы, нужна генерация антител с широким диапазоном нейтрализации. Примерами таких вирусов являются ВИЧ, против которого вакцины еще нет, и грипп, вакцины от которого эффективны лишь на 70 % или менее того
. Важно отметить, что при помощи молекулярных технологий можно создавать антитела in vitro (лат. «в пробирке»), используя библиотеки бактериофагов
. Несвязанные или свободные антитела сложно обнаружить во время острой фазы заболевания: их количество возрастает в течение двух-четырех недель после заражения, и они остаются в организме годами. В-клетки, так же как и T-клетки, могут становиться клетками иммунной памяти, те из них, конечно, которые побывали в контакте с конкретным вирусом. Такие CD8
T-лимфоциты и B-клетки иммунной памяти (или их антитела) часто существуют на протяжении всей жизни организма-хозяина и защищают его от повторного инфицирования тем же вирусом
. Такое происходит в организме поправившихся после вирусной инфекции оспы, кори, желтой лихорадки, полиомиелита или геморрагической лихорадки.
Когда вирусная инфекция, такая как ВИЧ, затягивается, значит иммунный ответ не справился с ликвидацией вируса. Гены, которыми обладают все вирусы, несут одну из двух главных функций. Одна группа генов гарантирует репликацию вирусного потомства. Она кодирует белки, защищающие вирусы от жестких тяжелых условий при переносе от одного организма-хозяина к другому; иными словами, геены защищают вирус, когда он проходит через внешнюю окружающую среду. Кодируются также вирусные белки, которые связывают вирус с рецепторами на клетках, способствуют проникновению вируса внутрь клетки, обеспечивают соответствующее оповещение его к началу репликации, сборки и выходу вирусного потомства из клетки, на которой он паразитирует. Среди главных целей второй группы генов – модуляция иммунной системы организма-хозяина. С помощью таких методов вирус может манипулировать нормальной работой иммунной системы, чтобы избежать отслеживания и уничтожения как его самого, так и инфицируемых им клеток. Результатом становится устойчивость существования вирусов в живом организме-хозяине.
Прорывом в изучении иммунной реакции на вирусы, инфицирующие только человека, при котором используется экспериментальная мышиная модель, стало создание человеческой иммунной системы в организме мыши – так называемой очеловеченной (гуманизированной) мыши. Такие гуманизированные мыши могут дать ответы на вопросы, необходимые для изучения человеческого организма (например, использование такого вируса, как ВИЧ, для инфицирования человека) и на которые нельзя ответить при помощи других экспериментальных моделей. Организм таких лабораторных мышей подвергается генетической манипуляции, в результате которой их иммунная система перестает вырабатывать мышиные T- и В-клетки. А затем им трансплантируют эмбриональную иммунную систему человека
.
Часть II. История успеха
Глава четвертая. Оспа: влияние на геополитику
Оспа, убившая почти 300 миллионов людей только в XX веке, – в три раза больше, чем погибло за все войны этого века, – наконец уничтожена
. Это глава о болезни, наводившей страх на весь мир, о ее ликвидации и о том, может ли она вернуться и снова вызвать смуту и разорение. Вот два самых интересных комментария к этому крупному достижению человечества в избавлении нашей планеты от оспы: во-первых, как 200 лет назад, так и в недавнем прошлом на пути к ее искоренению возникало значительное сопротивление; во-вторых, существуют серьезные разногласия по поводу возможности возвращения оспы и по поводу того, что следует предпринять в таком случае.
11 сентября 2001 года изменило Америку и весь мир. Заговор с целью намеренно направить два коммерческих самолета на столкновение с башнями-близнецами Всемирного торгового центра на Манхэттене указал всем странам земного шара на их уязвимость перед фанатиками, ценящими смерть дороже жизни и не считающимися с ни в чем не повинным гражданским населением. Еще раньше были устроены взрывы террористами-смертниками, и этот сценарий продолжает разыгрываться на Ближнем Востоке, в Африке, Азии и Европе.
С пониманием того, что нападения террористов-смертников могут стать причиной гибели большого числа людей, пришел страх перед биологическим терроризмом. Из нескольких имеющихся биологических возбудителей инфекции вирус оспы стоит если не наверху списка, то близко к его началу. Этот вирус прошел полевые испытания и доказал свою эффективность еще в конце 1700-х годов в битвах между французами и англичанами, известных в США как Война между французами и индейцами; затем во время Американской революции (Войны за независимость); и еще позднее – во Вторую мировую войну