Вот чугунная бутыль, в которую заложено некоторое количество этого вещества; в горлышко вставлена трубка. Мистер Андерсон поместит этот сосуд в огонь: ведь сосуд чугунный и может выдержать жар. А вот так называемый хлорат калия[27 - Бертолетова соль (примеч. ред.).]. Это вещество в больших количествах производится для отбеливания пряжи и тканей, для использования в химии и медицине, для фейерверков и других целей. Я смешиваю его с перекисью марганца (кстати, окислы меди и железа дали бы такие же результаты). Для получения кислорода из такой смеси достаточно будет нагреть сосуд до температуры гораздо более низкой, чем красное каление. Я не собираюсь добывать много кислорода, нам он нужен только для опытов. Однако вы сейчас убедитесь, что если я помещу в сосуд слишком мало смеси, то первая порция газа будет непригодна к употреблению, потому что она смешается с тем воздухом, который уже находится в сосуде. Как видите, нагревание на обычной спиртовке оказывается совершенно достаточным, чтобы получить кислород из смеси бертолетовой соли с перекисью марганца, так что у нас пойдут одновременно два процесса добывания кислорода. Смотрите, как обильно выделяется газ из этой маленькой порции смеси!
Чугунная бутыль с перекисью перекиси марганца
Исследуем этот газ и выясним, каковы его свойства. Вы видите, что здесь получается в точности такой же газ, как тот, который у нас получался в опыте с батареей: газ бесцветен, в воде не растворяется и по видимым свойствам похож на обычный атмосферный воздух. (Эту первую банку, содержащую смесь воздуха с первыми порциями выделяющегося кислорода, мы отставим подальше и приготовимся к проведению опытов надлежащим образом.)
У кислорода, который мы добывали из воды при помощи электрической батареи, была ярко выражена способность заставлять гореть дерево, воск и т. п.; очевидно, мы можем рассчитывать и здесь найти то же самое свойство. Испытаем газ. Посмотрите, вот как горит лучинка в воздухе, а вот как она горит в этом газе. (Лектор опускает лучинку в кислород.) Видите, как она ярко и хорошо горит!
Вы также можете наблюдать еще вот что: этот газ тяжелый; водород же поднялся бы вверх подобно воздушному шару или даже еще быстрее: ему не мешал бы вес оболочки. Нетрудно убедиться, что, хотя мы получили из воды вдвое больше по объему водорода, чем кислорода, отсюда еще не следует, чтобы у нас его было вдвое больше и по массе: ведь один газ тяжелый, а другой очень легкий. Мы располагаем методами определения массы газов или воздуха, но я не буду здесь заниматься этим, а просто сообщу вам, какова масса водорода и кислорода. Пинта водорода имеет массу всего три четверти грана, а тот же объем кислорода около двенадцати гран. Это очень большая разница. Масса кубического фута водорода 1/12 унции, а масса кубического фута кислорода 1 1/3 унции. Продолжая таким образом, мы могли бы дойти до таких масс вещества, которые можно определить с помощью весов, и таких, которые мы можем исчислять на центнеры и тонны, в чем вы очень скоро убедитесь.
Так вот, вернемся к этой способности кислорода поддерживать горение, по которой мы можем его сравнивать с воздухом. Я возьму огарок свечи и на нем покажу вам это свойство. Вот наша свечка горит в воздухе, а как же она будет гореть в кислороде? У меня тут есть банка с кислородом, и я накрою ею свечку, чтобы вы могли сравнить действие этого газа с действием воздуха. Ну, смотрите, Это похоже на тот яркий свет, который вы видели у полюсов электрической батареи. Подумайте, до чего здесь сильна реакция! И тем не менее, по ходу всей этой реакции не возникает ничего такого, что бы не получалось при сгорании свечи в воздухе. В кислороде наблюдается такое же выделение воды и точно такие же явления, какие происходят, когда свеча горит в воздухе.
Теперь, познакомившись с этим новым веществом, мы можем исследовать его несколько подробнее, чтобы иметь уверенность в том, что мы в общем хорошо поняли, что собой представляет эта составная часть продуктов сгорания свечи. Способность этого вещества поддерживать горение изумительно велика. Возьмем, например, эту простейшую лампочку, являющуюся своего рода прототипом всякого рода ламп, применяемых для самых различных целей, для маяков, для освещения предметов, рассматриваемых в микроскоп, и т. д. Если бы понадобилось заставить ее гореть очень ярко, вы бы сказали: «Раз свеча лучше горела в кислороде, то почему бы и лампе не гореть ярче!» Конечно, она будет лучше гореть.
Лампочка, помещенная в банку: в зависимости от подачи кислорода пламя горит тускло или ярко
Сейчас я нарочно устрою так, чтобы эта лампочка у нас горело тускло, а затем мистер Андерсон передаст мне трубку, подводящую сюда кислород из банки, где он у нас накопился, и я поднесу ее к пламени лампочки… Вот пошел кислород! И какое получилось пламя! Ну а что будет с лампой, если я прекращу подачу кислорода? (Закрывается кран, и лампа опять становится тусклой.) Поразительно, до чего мы усиливаем горение при помощи кислорода! Он влияет на горение не только водорода, углерода или свечи он усиливает все виды горения вообще.
Банка с кислородом и с железной проволокой
Посмотрим, например, как будет гореть в кислороде железо. Ведь вы уже видели, как слабо горит железо в воздухе. Вот банка с кислородом, а вот железная проволока; но даже если бы это был брус толщиной в руку, и то он горел бы совершенно так же, как проволока. К концу проволоки я сперва прикрепляю кусочек дерева и зажигаю его, а затем опускаю все вместе в банку. Смотрите! Дерево горит так, как оно и должно гореть в кислороде. А сейчас горение передастся железу… Вот загорелось и железо. Как ярко оно горит. Так оно и будет гореть долгое время. Если мы обеспечим подачу кислорода, железо будет продолжать гореть, пока не сгорит дотла.
Оставим теперь железо и обратимся к какому-нибудь другому веществу. Однако нам придется ограничиться немногими опытами, так как у нас не хватит времени для всех тех иллюстраций, которые вы могли бы посмотреть, будь у нас больше времени. Возьмем кусочек серы, вы знаете, как сера горит на воздухе. Так вот, поместим ее в кислород, и вы убедитесь, что все, что может гореть в воздухе, может гореть и в кислороде, и притом гораздо интенсивнее. Это наведет вас на мысль, что, пожалуй, сам атмосферный воздух обязан именно этому газу своей способностью поддерживать горение. Сера очень спокойно горит в кислороде, но вы же видите, что реакция здесь несравненно сильнее и интенсивнее, чем при горении серы в обыкновенном воздухе.
Теперь я покажу вам горение еще одного вещества – фосфора. Здесь условия более подходящие для этого опыта, чем у вас дома. Фосфор вещество весьма горючее; а если так обстоит дело в воздухе, то что вы можете ожидать от горения фосфора в кислороде? Показывать вам его в полной силе я не собираюсь, так как есть риск, что при этом взорвется весь прибор. Даже и так банка может треснуть, несмотря на все мои предосторожности. Видите, как горит фосфор на воздухе. Но какой изумительный свет он испускает при горении в кислороде! (Лектор опускает зажженный фосфор в банку с кислородом.) Вот вы тут видите, как отскакивают твердые частицы, благодаря которым это горение и оказывается таким ослепительно ярким.
До сих пор это свойство кислорода и вызываемое им яркое горение мы испытывали при помощи таких веществ, которые не содержатся в воде и в свече. Теперь нам надо еще рассмотреть это свойство в отношении к водороду. Помните, у нас произошел небольшой взрыв, когда мы дали возможность кислороду и водороду смешаться и гореть вместе. Вы помните также, что когда я сжигал кислород и водород вместе в одной струе, у нас получалось очень мало света, но очень много тепла. Теперь я собираюсь поджечь смесь кислорода и водорода в той же пропорции, в какой они содержатся в воде. Вот сосуд, в котором смешан один объем кислорода с двумя объемами водорода. Таким образом, эта смесь по своей природе не отличается от того газа, который мы сегодня получали при помощи электрической батареи.
Здесь у нас чересчур много газа, чтобы сжечь его одновременно, поэтому я устроил приспособление, чтобы надувать этой смесью газов мыльные пузыри, а затем их поджигать и таким образом на опыте убедиться, как кислород поддерживает горение водорода. Прежде всего проверим, удастся ли нам надуть пузырь. Вот пошел газ. (Через курительную трубку, присоединенную к банке со смесью, лектор пропускает газ в мыльную воду.) Вот и пузырь. Я ловлю его на ладонь. Пожалуй, мои действия в этом опыте покажутся вам странными, но я просто хочу вам доказать, что не всегда можно доверяться шуму и звукам, а лучше держаться подлинных фактов. (Лектор поджигает на своей ладони мыльный пузырь; происходит взрыв.) Я боюсь поджечь пузырь прямо у трубки, потому что взрыв может проникнуть в банку тогда она разлетелась бы на куски. По всем этим видимым явлениям и по звуку вы можете судить, что кислород с чрезвычайной готовностью и стремительностью соединяется с водородом.
Я надеюсь, что из всего сказанного выше вы теперь можете составить себе понятие о том, что представляет собой вода по отношению к кислороду и к воздуху. Почему кусочек калия разлагает воду на составные части? Потому, что в воде он находит кислород. Я сейчас повторю этот опыт. Что выделяется в свободном состоянии, когда я кладу в воду калий? Выделяется водород, и он-то и горит, а кислород соединяется с калием. Так этот кусочек калия, разлагая всякую воду, в том числе хотя бы воду, полученную при горении свечи, забирает из нее кислород, в свое время забранный свечой из воздуха, и тем самым высвобождает водород. Даже если положить кусочек калия на лед, то, как это ни странно, лед подожжет калий. Я это вам покажу для того, чтобы расширить ваше представление обо всем этом и чтобы вы могли убедиться, до какой степени внешние обстоятельства влияют на результаты опыта. Ведь калий на льду, а получается какое-то подобие вулканического извержения!
Ну, теперь мы познакомились с этими необычайными и удивительными реакциями. На следующей лекции я покажу вам, что такие странные и опасные явления не угрожают нам не только при горении свечи, но и при горении светильного газа в уличных фонарях и топлива в наших каминах, если только мы будем соблюдать соответствующие правила, подсказанные нам природой.
Лекция V
Кислород содержится в воздухе. Природа атмосферы. Ее свойства. Другие продукты горения свечи. Углекислота, ее свойства
Мы уже убедились, что водород и кислород можно получить из воды, полученной нами при горении свечи. Вы знаете, что водород берется из свечи, а кислород, вы полагаете, берется из воздуха. Но в таком случае вы вправе спросить меня: «Почему же получается, что воздух и кислород не одинаково хорошо сжигают свечу?» Если у вас свежо в памяти, что произошло, когда я накрыл огарок банкой с кислородом, вы припомните, что тут горение шло совсем иначе, чем в воздухе. Так в чем же дело? Это очень существенный вопрос, и я приложу все старания, чтобы вы в нем разобрались; он непосредственно связан с вопросом о природе атмосферы и поэтому для нас чрезвычайно важен.
Мы располагаем несколькими способами распознавания кислорода, помимо простого сжигания в нем тех или иных веществ. Вы видели, как горит свеча в кислороде и как на воздухе; вы видели, как горит фосфор на воздухе и как в кислороде; вы видели, как горит в кислороде железо. Но, кроме этих способов распознавания кислорода, есть и другие, и я разберу некоторые из них, чтобы расширить ваш опыт и ваши знания.
Вот, например, сосуд с кислородом. Я вам докажу присутствие этого газа. Я возьму тлеющую лучинку и опущу ее в кислород. Вы из прошлой беседы уже знаете, что произойдет: тлеющая лучинка, опущенная в банку, покажет вам, есть ли в ней кислород или нет. Есть! Мы это доказали горением.
А вот и другой способ распознавания кислорода, очень интересный и полезный. Здесь у меня две банки, каждая из которых наполнена газом. Они разобщены пластинкой, чтобы эти газы не смешивались. Я убираю пластинку, и начинается перемешивание газов: каждый газ как бы вползает в банку, где находится другой. «Так что же тут происходит? спросите вы. Они вместе не дают такого горения, какое мы наблюдали у свечи». Но вот взгляните, как присутствие кислорода можно распознать по его соединению с этим вторым веществом[28 - Бесцветная окись азота, соединяясь с кислородом, образует бурые пары двуокиси азота (примеч. ред.).].
Какой великолепно окрашенный газ получился! Он сигнализирует мне о присутствии кислорода. Тот же опыт можно проделать и путем смешения этого пробного газа с обыкновенным воздухом. Вот банка с воздухом таким, в котором стала бы гореть свеча, а вот банка с этим пробным газом. Я даю им возможность смешиваться над водой, и вот результат: содержимое испытательной банки втекает в банку с воздухом, и вы видите, что происходит точно такая же реакция. Это доказывает, что в воздухе есть кислород, т. е. то самое вещество, которое мы уже добывали из воды, полученной при сгорании свечи.
Но все-таки почему же свеча не так хорошо горит в воздухе, как в кислороде? Сейчас мы к этому перейдем. Вот у меня две банки; они наполнены газом до одинакового уровня, и на вид они одинаковы. По правде говоря, я сейчас даже не знаю, которая из этих банок содержит кислород, а которая воздух, хотя мне известно, что их заранее наполнили именно этими газами. Но у нас есть пробный газ, и я сейчас выясню, есть ли между содержимым обеих банок какая-либо разница в способности вызывать покраснение этого газа. Я впускаю пробный газ в одну из банок. Следите, что происходит. Как видите, покраснение есть, стало быть, здесь кислород. Испытаем теперь вторую банку. Как видите, покраснение не так отчетливо, как в первой банке.
Далее происходит любопытнейшая вещь: если смесь двух газов во второй банке хорошенько взболтать с водой, красный газ поглотится; если впустить еще порцию испытательного газа и опять взболтать банку, поглощение красного газа повторится; и так можно продолжать, пока будет оставаться кислород, без которого невозможно это явление. Если я впущу воздух, дело не изменится; но как только я введу воду, красный газ исчезнет; и я могу продолжать, таким образом, впускать все больше и больше испытательного газа, пока у меня в банке не останется нечто такое, что уже не будет окрашиваться от прибавления того вещества, которое окрашивало воздух и кислород. В чем же дело? Вы понимаете, что в воздухе, кроме кислорода, содержится еще что-то, и оно-то и остается в остатке. Сейчас я впущу в банку еще немного воздуха, и если он покраснеет, вы будете знать, что там еще оставалось какое-то количество красящего газа и что, стало быть, не его нехваткой объясняется то, что воздух израсходовался не весь.
Это поможет вам понять то, что я теперь скажу. Вы видели, что когда я сжег фосфор в банке, и получившийся из фосфора и кислорода дым осел, изрядное количество газа осталось неизрасходованным, подобно тому как наш пробный газ оставил что-то незатронутым. И действительно, после реакции остался вот этот газ, который не изменяется ни от фосфора, ни от красящего газа. Этот газ не кислород, но, однако, это составная часть атмосферы.
Таков один способ разделения воздуха на те два вещества, из которых он состоит, т. е. на кислород, сжигающий наши свечи, фосфор и все прочее, и на вот это другое вещество – азот, в котором они не горят. Этой второй составной части в воздухе гораздо больше, чем кислорода.
Этот газ оказывается очень интересным веществом, если заняться его исследованием, но вы, может быть, скажете, что он совсем не интересный. В некоторых отношениях это так: ведь он не проявляет никаких блестящих эффектов горения. Если его испытывать зажженной лучинкой, как я испытывал кислород и водород, то он не будет ни сам гореть, как водород, ни заставлять гореть лучинку, подобно кислороду. Как бы я его ни испытывал, я не смогу от него добиться ни того, ни другого: он и не загорается и не дает гореть лучинке он гасит горение любого вещества. При обычных условиях ничто не может в нем гореть. У него нет ни запаха, ни вкуса; это не кислота и не щелочь; по отношению ко всем нашим внешним чувствам он проявляет полное безразличие. И вы могли бы сказать: «Это ничто, оно не заслуживает внимания химии; чего ради оно существует в воздухе?»
И тут-то нам пригодится умение делать выводы из опыта. Предположим, что вместо азота или смеси азота с кислородом, наша атмосфера состояла бы из чистого кислорода, что бы с нами сталось? Вы прекрасно знаете, что кусок железа, зажженный в банке с кислородом, сгорает дотла. При виде топящегося камина вообразите, что сталось бы с его решеткой, если бы вся атмосфера состояла из одного только кислорода: чугунная решетка стала бы гореть куда сильнее, чем каменный уголь, которым мы топим камин. Огонь в топке паровоза это было бы все равно, что огонь на складе горючего, если бы атмосфера состояла из кислорода.
Азот разбавляет кислород, умеряет его действие и делает его полезным для нас. К тому же азот уносит с собой весь тот чад и газы, которые, как вы видели, возникают при горении свечи, рассеивает их по всей атмосфере и переносит их туда, где они оказываются нужны для поддержания жизни растений, а тем самым и человека. Таким образом, азот выполняет в высшей степени важную работу, хотя вы, ознакомившись с ним, говорите: «Ну, это совсем никчемная штука».
В своем обычном состоянии азот представляет собой неактивный элемент: никакое воздействие, кроме сильнейшего электрического разряда, да и то только в очень слабой степени, не может заставить азот непосредственно вступить в соединение с другим элементом атмосферы или с иными окружающими веществами. Это вещество совершенно индифферентное, т. е., иначе говоря, безразличное, а тем самым и безопасное.
Но прежде чем подвести вас к этому выводу, я должен сперва кое-что рассказать вам о самой атмосфере. Вот таблица, показывающая процентный состав атмосферного воздуха:
Она правильно отражает относительные количества кислорода и азота в атмосфере. Отсюда мы видим, что в пяти пинтах воздуха содержится всего одна пинта кислорода на четыре пинты азота; иначе говоря, по объему азот составляет
/
атмосферного воздуха. Все это количество азота уходит на то, чтобы разбавить кислород и смягчить его действие; в результате и свеча надлежащим образом снабжается горючим и наши легкие могут дышать воздухом без вреда для здоровья. Ведь для нас не менее важно получать кислород для дыхания в надлежащем виде, чем иметь соответствующий состав атмосферы для горения угля в камине или свечи.
Теперь я сообщу вам массы этих газов. Пинта азота имеет массу 10
/
грана, а кубический фут 1
унции. Такова масса азота. Кислород тяжелее: пинта его имеет массу 11
/
грана, а кубический фут 1
/
унции.
Весы с медной наполненной воздухом бутылкой, снабженной краном
Вы уже несколько раз задавали мне вопрос: «Как определяют массу газов?», и я очень рад, что этот вопрос вас заинтересовал. Сейчас я вам покажу, это дело очень простое и легкое. Вот весы, а вот медная бутылка, аккуратно выточенная на токарном станке и при всей своей прочности имеющая наименьшую возможную массу. Она совершенно непроницаема для воздуха и снабжена краном. Сейчас кран открыт, и поэтому бутылка наполнена воздухом. Весы эти очень точные, и бутылка в ее теперешнем состоянии уравновешена на них гирями на другой чашке. А вот и насос, при помощи которого мы можем нагнетать воздух в эту бутылку. Сейчас мы накачаем в нее известное количество воздуха, объем которого будет измеряться емкостью насоса. (Накачивается двадцать таких объемов.) Теперь мы закроем кран и положим бутылку обратно на весы. Смотрите, как чашка весов опустилась: бутылка стала гораздо тяжелее, чем прежде. Емкость бутылки у нас не изменилась, значит, воздух в том же объеме стал тяжелее. Благодаря чему? Благодаря тому воздуху, который мы в нее накачали насосом вдобавок к имевшемуся воздуху.
Сейчас мы выпустим воздух вот в ту банку и предоставим ему возможность вернуться в прежнее состояние. Все, что мне для этого нужно сделать, сводится к тому, чтобы плотно соединить медную бутылку с банкой и открыть краны, и вот вы видите, у нас тут собран весь тот объем воздуха, который я только что накачал в бутылку двадцатью взмахами насоса. Чтобы удостовериться, что у нас по ходу этого опыта не произошло никакой ошибки, мы опять положим бутылку на весы. Если она теперь снова окажется уравновешена первоначальной нагрузкой, мы сможем быть совершенно уверены, что мы правильно проделали опыт. Да, она уравновесилась. Вот таким образом мы и можем узнать массу тех добавочных порций воздуха, которые мы в нее накачивали. Так можно установить, что кубический фут воздуха имеет массу 1
/
унции.
Но этот скромный опыт никак не сможет довести до вашего сознания всю сущность полученного результата. Поразительно, насколько цифры возрастают, когда мы переходим к более крупным объемам. Вот такое количество воздуха (кубический фут) имеет массу 1