Способы обучения ИИ-систем
Существуют разные типы машинного обучения. Решающую роль в развитии искусственного интеллекта играют инновации, то есть новые способы обучения систем ИИ.
При обучении с учителем (supervised learning) алгоритму передаются структурированные, классифицированные и снабженные метками данные. Например, чтобы научить систему глубокого обучения распознавать на снимках собак, ей нужно предоставить много тысяч (или даже миллионов) изображений этого животного с меткой «собака». Кроме того, потребуется огромное количество изображений без собаки с меткой «нет собаки». После обучения можно показывать системе новые фотографии, и она будет определять наличие на них собаки на уровне, превосходящем возможности обычного человека.
Обучение с учителем – наиболее распространенный метод, применяемый в современных системах ИИ. На его долю приходится около 95 % практических приложений. Именно оно послужило основой машинного перевода (после обучения на миллионах предварительно переведенных документов) и ИИ-систем диагностики (после обучения на снимках с пометками «рак» и «нет рака»). К сожалению, для такого обучения требуются огромные объемы маркированных данных. Именно поэтому лидирующее положение в технологии глубокого обучения занимают такие компании, как Google, Amazon и Facebook.
Обучение с подкреплением (reinforcement learning), по сути, представляет собой обучение на практике или методом проб и ошибок. Система учится не на правильных размеченных данных, а самостоятельно ищет решение, получая подкрепление в случае успеха. Это напоминает дрессировку животных, которым в случае правильных действий дается кусочек вкусной еды. Именно обучение с подкреплением применялось для построения систем ИИ, играющих в игры. Из интервью с Демисом Хассабисом вы узнаете, что компания DeepMind использовала этот тип обучения для разработки компьютерной системы AlphaGo.
Проблема обучения по этому алгоритму заключается в необходимости огромного количества тренировочных попыток. Поэтому он применяется в основном для игр или для задач, которые можно воспроизводить на компьютере с высокой скоростью. Обучение с подкреплением можно использовать при разработке беспилотных автомобилей, но не для их эксплуатации на реальных дорогах. Виртуальные машины обучаются в искусственной среде, а после завершения обучения программное обеспечение устанавливается на реальные автомобили.
Обучение без учителя (unsupervised learning) обеспечивает непосредственное обучение на поступающих из окружающей среды неструктурированных данных. Именно так учатся люди. Например, дети учатся говорить, слушая речь родителей. Разумеется, человек использует и другие типы обучения, но самым характерным для него остается наблюдение и неконтролируемое взаимодействие с окружающей средой.
Обучение без учителя – один из наиболее многообещающих путей развития ИИ. Только представьте системы, умеющие обучаться сами без подготовки данных. Но их разработка – одна из самых сложных задач. Ее решение станет важной точкой на пути к созданию сильного ИИ.
Термин сильный ИИ обозначает истинно мыслящую машину, изначальную цель создания ИИ. Еще его называют интеллектом, сравнимым с человеческим разумом. Примеры сильного ИИ можно наблюдать в научной фантастике: компьютер HAL 9000 из «Космической одиссеи», главный компьютер космического корабля «Энтерпрайз» (или Дэйта) из «Звездного пути», андроид C3PO из «Звездных войн» и агент Смит из «Матрицы». Все эти вымышленные системы могли пройти тест Тьюринга (Turing test), то есть вести беседу как человек. Этот тест был предложен Аланом Тьюрингом в статье 1950 г. «Вычислительные машины и разум»[7 - Тьюринг А. Вычислительные машины и разум / Пер. с англ. К. Королева. – М.: АСТ, 2018. – 128 с. – (Серия «Эксклюзивная классика»).], которую можно считать основополагающей работой в области ИИ.
Есть вероятность, что когда-нибудь появится cуперинтеллект (superintelligence), или машина, превосходящая интеллектуальные способности любого человека. Это может произойти в результате простого увеличения аппаратных мощностей и быть ускорено самосовершенствованием этой машины. Так она запустит «рекурсивный цикл улучшения» или «быстрый интеллектуальный взлет», создавая проблему «выравнивания», если вступит в противоречие с интересам человека.
Иошуа Бенджио
“ИИ, который существует сейчас и может появиться в обозримом будущем, не понимает и не чувствует нормы морали".
Директор Монреальского института алгоритмов обучения (MILA), доктор computer science, профессор кафедры информатики и математических методов Монреальского университета, соруководитель проекта Learning in Machines & Brains Канадского института перспективных исследований (CIFAR)
Иошуа Бенджио широко известен как один из пионеров глубокого обучения. Он активно продвигал исследования нейронных сетей, в частности обучение без учителя, и стал соавтором книги «Глубокое обучение»[8 - Бенджио И., Гудфеллоу Я., Курвилль А. Глубокое обучение / Пер. с англ. А. Слинкина. – М.: ДМК пресс, 2017. – 652 с.: ил. Книга бесплатно доступна по адресу https://www.deeplearningbook.org.]– одним из основных учебников по одноименному предмету.
Мартин Форд: Вы играете ведущую роль в исследованиях ИИ, поэтому начать мне хотелось бы с вопроса о том, какие исследовательские проблемы стоят на пути к сильному ИИ.
Иошуа Бенджио: До создания ИИ, сравнимого с человеческим, нам еще очень далеко. Нужно понять, к примеру, почему невозможно создать машину, которая понимала бы окружающую действительность так же, как человек. Чего нам не хватает: обучающих данных или вычислительных мощностей? Многие считают, что причина состоит в отсутствии необходимых базовых компонентов, например, умения видеть причинно-следственные связи в данных, которое позволяет делать обобщения и находить правильные ответы в условиях, отличных от тренировочных.
Человек может представить, как он переживет новый для себя опыт. Например, если вы никогда не попадали в автомобильную аварию, вы все равно сможете прокрутить у себя в голове такую ситуацию и принять правильное решение. Обучение с учителем помогает компьютеру находить статистические закономерности в поставляемых данных, которые заранее классифицированы и размечены людьми.
Многие исследования пока не дали значимых результатов. Компьютер не может автономно приобретать знания о мире, воздействовать на него и наблюдать результат воздействия. Ответы на вопрос, как это реализовать, ищем не только мы.
М. Ф.: Какие проекты в настоящее время можно считать первостепенными в области глубокого обучения? Мне первым делом вспоминается программа AlphaZero. Есть ли другие?
И. Б.: На мой взгляд, из множества интересных проектов наиболее перспективны те, в которых агент в виртуальном мире пытается решать задачи, попутно изучая все с ними связанное. Такими проектами занимаемся мы в MILA, а также компании DeepMind, OpenAI, Университет Беркли, Facebook и Google в рамках проекта Google Brain. Это новые горизонты.
Но это долговременные исследования. Мы работаем не над конкретными вариантами применения глубокого обучения, а над тем, как научить агента осмысливать окружающую среду, говорить и понимать так называемый обоснованный язык (grounded language).
М. Ф.: Что означает этот термин?
И. Б.: Раньше компьютеры обучались языку, знакомясь с множеством текстов. Причем они достигали понимания только через связь слова с называемой им реалией. В отличие от робота, человек может сопоставить слово не только с объектом из реального мира, но и с вариантами изображения этого объекта.
Многочисленные исследования в области обучения обоснованному языку сводятся к попыткам научить роботов понимать язык хотя бы на уровне отдельных слов и выражений и реагировать соответствующим образом. Это очень интересное направление, необходимое для реализации таких вещей, как диалог с роботами, личные помощники и т. п.
М. Ф.: То есть, по сути, идея состоит в том, чтобы дать агенту свободу в смоделированной среде, позволив ему учиться, как это делают дети?
И. Б.: Именно так. Более того, мы пользуемся результатами исследований в области детского развития и изучаем, какие этапы проходит новорожденный в первые месяцы жизни, постепенно приобретая представления о мире. До сих пор не совсем понятно, какие умения являются врожденными, а какие получены путем изучения.
Несколько лет назад я предложил для машинного обучения практику, которая используется при дрессировке животных – обучение по плану (curriculum learning). Обучающие примеры в этом случае демонстрируются не произвольно, а в последовательности, целесообразной для обучения. Процесс начинается с простых концепций, которые после их освоения учеником можно использовать как «кирпичики» для объяснения более сложных понятий.
М. Ф.: Я бы хотел поговорить о работе над сильным ИИ. Очевидно, что важной составляющей этого процесса вы считаете обучение без учителя. Что еще необходимо сделать?
И. Б.: Мой друг Ян Лекун сравнивает этот процесс с подъемом на гору. Сначала все радуются, насколько высоко забрались, но по мере приближения к вершине встречается множество других гор. Сейчас при разработке сильного ИИ четко видна ограниченность используемых подходов. Пока мы искали способы обучения более глубоких сетей, взбираясь на первую гору, создаваемые системы исследовались очень узко – на том этапе было важно просто подняться на несколько шагов вверх.
Как только применяемые техники обучения дали первые удовлетворительные результаты – мы приблизились к вершине первой горы, – стали заметны ограничения. И это следующая гора, которую нужно будет покорять. Поэтому невозможно сказать, сколько еще открытий потребуется.
М. Ф.: А вы можете хотя бы примерно оценить количество гор? Или период времени, который потребуется на создание сильного ИИ? Просто поделитесь своими прогнозами.
И. Б.: Не вижу смысла говорить о сроках. Невозможно предсказать, когда именно будет открыта дверь, от которой у нас нет ключа. Могу только заверить, что в ближайшие годы никаких прорывов не будет.
М. Ф.: Считаете ли вы перспективными глубокое обучение и нейронные сети в целом?
И. Б.: Да, многолетний прогресс в области глубокого обучения и нейронных сетей означает, что открытые концепции будут активно использоваться и дальше. Возможно, именно они помогут понять, каким образом мозг животных и человека осваивает сложные понятия. Но этого недостаточно для создания сильного ИИ. В настоящее время мы видим ограниченность имеющихся систем и собираемся улучшать и развивать их.
М. Ф.: Я знаю, что Институт искусственного интеллекта Пола Аллена (AI2) работает над проектом Mosaic, в рамках которого компьютеру пытаются помочь обрести разум. Считаете ли вы, что это важная задача? Ведь, возможно, разум рождается в процессе обучения?
И. Б.: Я уверен, что он возникает именно как результат обучения. Разум не может появиться только потому, что кто-то положил вам в голову какие-то знания. По крайней мере, у людей так.
М. Ф.: Глубокое обучение – основной путь к созданию сильного ИИ или потребуются гибридные системы?
И. Б.: Изначально ИИ был условным понятием, ни о каком обучении речи не шло. В центре внимания была способность машины делать последовательные выводы и объединять фрагменты информации. А глубокое обучение нейронных сетей можно назвать познанием снизу вверх. Все начинается с восприятия, в котором мы закрепляем понимание мира машиной. Затем можно строить распределенные представления и фиксировать связи между множеством переменных.
Отношения между такими переменными мы с братом изучали в 1999 г., что дало толчок к появлению в области естественного языка таких подходов, как векторное представление слов или распределенные представления слов и предложений. В них слово описывается характером активности в мозге или набором чисел. Слова со сходными значениями связываются со сходными числовыми комбинациями.
В настоящее время на базе этих подходов пытаются решать классические проблемы ИИ, связанные с умением рассуждать и понимать, программировать и планировать. «Строительные блоки», обнаруженные при изучении восприятия, сейчас пробуют распространять на когнитивные задачи более высокого уровня (психологи называют это действиями Системы 2). Я полагаю, именно таким способом мы будем двигаться к сильному ИИ. Это нельзя назвать гибридной системой; скорее, мы пытаемся работать над классическим ИИ, используя как строительный материал концепции из глубокого обучения. Можно сказать, что требуются альтернативные пути достижения цели.
М. Ф.: То есть вы считаете, что все сведется к нейронным сетям с различными архитектурами?
И. Б.: Да. Ведь человеческий мозг состоит из нейронных сетей. Нужно придумать архитектуры и обучающие техники, позволяющие решать задачи, поставленные перед классическим ИИ.
М. Ф.: Обучения и тренировки будет достаточно или потребуется какая-то дополнительная структура?
И. Б.: Она уже существует, просто отличается от привычной структуры представления знаний, которую мы наблюдаем в энциклопедиях или формулах. Она имеет архитектуру нейронной сети и довольно широкие допущения по поводу окружающего мира и вершины собственных возможностей. Чтобы реализовывать в нейронной сети механизм внимания, такая структура требует большого количества предварительных знаний. Оказывается, данные имеют решающее значение для таких вещей, как машинный перевод.
Уже существует множество предположений в разных предметных областях о мире и о внедряемой функции, которые в виде архитектур и целей содержались в технологии глубокого обучения. Именно этому посвящено большинство современных научных работ.
М. Ф.: Говорят, что новорожденные развивают навык распознавания лиц с первых дней жизни. Очевидно, что это возможно благодаря некой структуре в мозге. Это не просто реакция нейронов на пикселы.
И. Б.: Ошибаетесь! Это именно реакция нейронов на пикселы, кроме того, в мозге ребенка присутствует особая структура, которая распознает нечто круглое с двумя точками внутри.
М. Ф.: Я считаю, что она существует с момента рождения.
И. Б.: Разумеется. И все то, что мы проектируем в нейронных сетях, тоже существует с самого начала. Работа исследователя в области глубокого обучения напоминает процесс эволюции. Знания вводятся как в виде структуры, так и через обучение.
При желании можно создать нечто, позволяющее сети распознавать лица, но в этом нет смысла, так как ИИ быстро обучается. Поэтому мы работаем над решением более сложных проблем.