Оценить:
 Рейтинг: 0

Охотники за микробами. Как антибиотики, санация и дезинфекция ослабляют иммунитет и приводят к развитию новых заболеваний

Год написания книги
2014
Теги
<< 1 2 3
На страницу:
3 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля
Живут они и в горных породах. Например, на золотом прииске Мпоненг в ЮАР выживают благодаря радиоактивному распаду: уран разделяет молекулы воды, а получившийся свободный водород объединяют с сульфат-ионами, получая пищу. Больше того, они едят даже золото. Delftia acidovorans с помощью особого белка превращает ионы золота, ядовитые для нее, в инертную форму, которая осаждается из окружающей воды и формирует минеральные залежи. Самая же живучая бактерия в мире, Deinococcus radiodurans, живет в радиоактивных отходах.

Но мой любимый пример описали несколько лет назад. Геологи бурили исследовательскую скважину и изучали извлеченные оттуда керны. Один, который достали с глубины в милю, состоял всего из трех компонентов: базальта (коренной породы), воды и бактерий – множества бактерий [6, см. с. 26]. Они жили и размножались на диете из камней и воды.

Мы знаем, что наша планета обитаема благодаря микроорганизмам. Они разлагают мертвую материю – это очень ценная услуга. Кроме того, превращают инертный азот из атмосферы в свободный, которым могут пользоваться живые клетки. И тем самым приносят пользу растениям и животным. После утечки нефти в скважине Deep Water Horizon в Мексиканском заливе бактерии съели большую часть загрязняющих веществ, потому что сумели приправить питательные вещества в нефти азотом из воздуха, устроив себе комплексный обед.

Наконец, целые отрасли промышленности основаны на их работе: изготовление хлеба, который мы едим, алкогольных напитков, которые пьем, современных лекарств, разработанных биотехнологической отраслью. Вполне можно утверждать, что микроорганизмы способны провести любой необходимый нам химический процесс. В огромном разнообразии кроются неслыханные возможности. Нужно лишь четко определить проблему и найти бактерии, которые могут ее решить, или изменить их с помощью генной инженерии.

* * *

История микроорганизмов – это сага о бесконечных войнах и сотрудничестве. Поскольку многие знакомы с дарвиновскими идеями о конкуренции и выживании наиболее приспособленных видов, начнем именно оттуда.

Тщательные наблюдения Дарвина показали, что индивидуальные представители вида всегда отличаются, в качестве примера возьмем птиц или людей. Ученый разработал теорию эволюции, выдвинув постулат, что при существовании различных вариантов природа «отберет» тот (или тех), кто наиболее адаптирован («приспособлен»), кто лучше всего использовал свой цикл жизни и оставил потомство. Именно они побеждают в конкуренции с другими видами и со временем начнут количественно превосходить их. Возможно, даже вызовут вымирание последних. Естественный отбор – причина часто упоминаемого «выживания наиболее приспособленных». Но Дарвин не знал, что тот же принцип можно отнести к микробам. Как и мы, он сосредоточился в первую очередь на том, что видел своими глазами, – растениях и животных. Но на деле едва ли не лучшие доказательства естественного отбора удалось получить с помощью наблюдений и экспериментов именно над микроорганизмами.

Например, я могу вырастить культуру распространенной кишечной бактерии Е. coli [7, см. с. 26], поместив немного существующих клеток в чашку с питательным веществом. За ночь в теплом инкубаторе она может дать до 10 миллиардов новых клеток. Вся чашка будет покрыта настолько плотным ковром, что отдельные колонии различить невозможно. А теперь предположим, что я сделал такой же посев в другую чашку, но добавил стрептомицин – антибиотик, убивающий большинство штаммов Е. coli. На следующее утро я увижу всего десяток изолированных колоний размером с миниатюрный прыщик, в каждой из которых будет от силы миллион клеток. Каждое скопление происходит от одной-единственной, которая пережила контакт с антибиотиком, а затем размножилась. Как объяснить разницу в результатах между посевом со стрептомицином и без него?

Во-первых, мы видим, что антибиотик сработал. Вместо 10 миллиардов клеток всего 10 миллионов, то есть в тысячу раз меньше. Можно сказать, что антибиотик убил 99,9 % клеток, позволив выжить лишь малому количеству. Но все же лекарство сработало не полностью. Некоторым удалось выжить. Так почему же одни клетки уцелели, а другие – нет? Просто повезло? И да и нет.

Везение состоит в том, что клетки, резистентные к стрептомицину, имеют вариант гена, необходимого всем Е. coli для выработки белков, без которых они не смогут существовать. Он не очень эффективен, но его хватает, чтобы помочь резистентным штаммам выжить и произвести потомство. Остальные же умирают, потому что антибиотик вмешивается в действие обычной версии того же белка.

Генетические варианты, обеспечивающие это свойство, появляются интересным образом. Вполне возможно, что у некоторых клеток (в данном примере – десяти) из исходной культуры в миллиард был подобный вариант гена. Эти клетки существовали изначально. Описывая эксперимент в дарвиновских терминах, можно сказать, что стрептомицин «отбирает» в популяции варианты с резистентной формой гена, а вот отсутствие антибиотика в окружающей среде «отбирает» более эффективную, но уязвимую к нему обычную форму. Количество Е. coli с данным свойством зависит от того, как часто и как давно они контактировали со стрептомицином. Это простой пример естественного отбора, но конкуренция вечна. Пусть победит сильнейший микроб.

Одни конкурируют с другими, охотятся на них и даже эксплуатируют, но есть и бесчисленные примеры сотрудничества и синергии. Например, если кишечная бактерия Bacteroides может очистить химическое вещество в окружающей среде, мешающее развитию Е. coli, то это выгодно второй. Одностороннее полезное отношение такого рода называется комменсализмом.

Еще более сильным бывает взаимодействие, если оно выгодно обеим сторонам. Представьте, что выделения Е. coli служат хорошим источником пищи для Bacteroides. В таком случае два этих вида будут собираться в одной среде. Оба всего лишь следуют собственной программе, но при этом помогают друг другу. Это симбиоз.

В иных условиях создают симбиоз другие бактерии. Например, в быстром ручье бактерия А поедает выделения бактерии Б, а также прилипает к острым краям камней. Бактерия В прилипать не умеет, но может прицепляться к бактерии А. Бактерия Б производит вещество, питательное для В. Вот вам и ситуация, где бактерии А, Б и В будут встречаться вместе, причем к выгоде для всех трех.

За более чем 4 миллиарда лет эволюции бактерий, учитывая, что некоторые делятся каждые двенадцать минут, а также их астрономическое количество, вариантов было практически бесконечное множество. Благодаря этому постоянному процессу появились отдельные бактерии, населившие все доступные ниши на Земле.

Иногда они стабильно живут вместе, формируя консорциум. Подобные кооперативные группы в изобилии встречаются в окружающей среде – в почве, ручьях, гниющих бревнах, горячих источниках – практически везде, где есть жизнь. Самое древнее однозначное доказательство существования жизни – это окаменевшие цианобактериальные маты возрастом 3,5 миллиарда лет, найденные в Австралии. Консорциумы, состоявшие из огромных лежащих друг на друге листов, – полноценные миниатюрные экосистемы. Скорее всего, одни занимались фотосинтезом, другие дышали кислородом, третьи осуществляли ферментацию, четвертые ели необычные неорганические соединения. То, что для одного вида – еда, для другого – яд. Собравшись в слои и объединив усилия, они смогли обеспечить выживание для всех.

Существуют микроорганизмы, которые умеют создавать вокруг себя слои вещества, похожего на желатин. Этот плотный гель называется биопленкой. Состав бывает разным, но он защищает бактерию от высыхания, избыточной жары, нападения иммунной системы. Его существование объясняет присутствие бактерий в самых жестоких условиях.

Микробы образуют консорциумы и огромные сети сотрудничества не только в почве, океане или каменистых поверхностях, но и в животных. В человеческом теле это главные персонажи моей истории про «пропавших микробов». Великий биолог Стивен Джей Гоулд дал нам точку отсчета для всей земной биологии, написав:

Мы живем в эпоху бактерий (как было вначале, как есть сейчас и как должно быть всегда, пока миру не настанет конец…) [8, см. с. 26]

Вот контекст человеческой жизни – и передний, и задний ее план.

Примечания

1. «…и вы сотрете всю человеческую историю» (см. с. 18): J. McPhee, Basin and Range, book 1 in Annals of the Former World (New York: Farrar, Straus & Giroux, 1998).

2. «…за несколькими исключениями, лишь подтверждающими правило»(см. с. 18): Н. N. Schulz et al., "Dense populations of a giant sulfur bacterium in Namibian shelf sediments," Science 284 (1999): 493-95. Но такие большие микробы – аномалия в мире, где доминируют микроскопические формы.

3. «…между нами и кукурузой» (см. с. 19): N. Расе, "A molecular view of microbial diversity and the biosphere," Science 276 (1997): 734- 40. Карл Вёзе, Норман Пэйс и другие считают, что бактерии – первая форма жизни, зародившаяся на Земле.

4. «…240 миллиардов африканских слонов» (см. с. 20): W. В. Whitman et al., "Prokaryotes: The unseen majority," Proceedings of the National Academy of Sciences 95 (1998): 6578-83; J. S. Lipp et al., "Signifi cant contribution of Archaea to extant biomass in marine subsurface sediments," Nature 454 (2008): 991-94; M. L. Sogin et al., "Microbial diversity in the deep sea and the underexplored ’rare biosphere,’ " Proceedings of the National Academy of Sciences 103(2006): 12115-20.

5. «…отбор в действии» (см. с. 21): Бактерии, поедающие пластик. T. Suyama et al., "Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics," Applied and Environmental Microbiology 64 (1998): 5008-11; E. R. Zettler et al., "Life in the ’plastisphere’: microbial communities on plastic marine debris," Environmental Science and Technology 47 (2013): 7137-46.

6. «…воды и бактерий – множества бактерий» (см. с. 22): Т. О. Stevens and J. P. McKinley, "Lithoautotrophic microbial ecosystems in deep basalt aquifers," Science 270 (1995): 450-54.

7. «…распространенной кишечной бактерии E.coli» (см. с. 23): Формальное название E.coli – Escherichia coli, в честь Теодора Эшериха, немецкого врача, открывшего ее в 1885 году в фекалиях здоровых людей и назвавшего Bacterium coli commune. В начале XX века ее переименовали в Escherichia coli. Хотя это самая известная бактерия в человеческом желудочно-кишечном тракте, на самом деле она обычно составляет не больше тысячной доли всех присутствующих в кишечнике бактерий. Поскольку E. coli очень легко вырастить в культуре, она стала модельным организмом для изучения биологии, биохимии и генетики клеточной жизни. У многих из пяти тысяч генов E. coli есть аналоги в человеческом теле.

8. «…и как должно быть всегда, пока миру не настанет конец» (см. с. 25): В 1993 году С. Дж. Гоулд написал рецензию в Nature на новую тогда книгу Э. О. Уилсона «Разнообразие жизни», где сказал, что Уилсон уже знает, что не существует какой-либо отдельной эпохи пресмыкающихся и млекопитающих; все они – лишь части вечной эпохи бактерий, и он об этом говорит (S. J. Gould, "Prophet for the Earth: Review of E. O. Wilson’s ’The diversity of life’," Nature 361 [1993]: 311-12.).

Глава 3. Микробном человека

Задумайтесь ненадолго о своих жизненно важных органах. Сердце, мозг, легкие, почки и печень – сложные структуры, выполняющие необходимые функции для поддержания жизни. Каждое мгновение, и днем и ночью, они перекачивают жидкости, переносят отходы, принимают воздух и питание, передают сигналы, которые позволяют нам чувствовать мир и передвигаться по нему. Когда в результате болезни или травмы отказывает любой из этих органов, мы умираем. Все просто.

А если я вам скажу, что есть еще один жизненно важный «орган», который поддерживает жизнь, но которого вы никогда не видели? Он находится на нас и внутри нас, и лишь недавно мы поняли, какую важную роль играет в поддержании нашего здоровья.

Возможно, самое интересное то, что эта часть тела кажется совершенно чуждой. Она состоит не из человеческих клеток и сделана не по чертежам человеческих генов. Это триллионы маленьких живых существ, микробов и их родственников. Вы, может быть, решите, что называть подобное собрание жизненно важным органом уже чересчур, но именно это и представляет собой микробном с функциональной точки зрения. В отличие от мозга и сердца его развитие начинается не в утробе, а с момента рождения. В первые несколько лет жизни его развитие продолжается благодаря получению микробов от людей, окружающих нас. Но не обманывайте себя. Потерять сразу весь свой микробном – практически то же самое, что лишиться печени или почек. Если при этом не будете жить в скафандре, долго не протянете.

Микроорганизмы, живущие в нашем теле, – не просто случайная смесь всех видов, обитающих на Земле. Скорее, каждое существо эволюционировало совместно со своим набором микробов, которые осуществляют метаболические и защитные функции. Иными словами, они работают на нас. Есть микробном у морской звезды и у акулы, есть даже у губки. У рептилий, у каждой совы, голубя и шалашника. Когда выживает вид, выживают и они. Млекопитающие, от маленьких лемуров до дельфинов и от собак до людей, полны микроорганизмов, специализирующихся на поддержании в них жизни и хорошего самочувствия.

Микробы – симбионты [1, см. с. 42] – предоставляют носителю, в котором обитают, жизненно необходимые услуги в обмен на кров и пищу.

Термиты могут переваривать дерево исключительно благодаря бактериям в их кишечнике. Коровы усваивают питательные вещества из травы, которую едят, благодаря микробам в их четырехкамерном желудке. Даже у тли они есть, в том числе группа Buchnera, впервые поселившаяся в них более 150 миллионов лет назад. Эти микроорганизмы имеют ключевые метаболические гены, которые помогают производить белки – благодаря им тля может употреблять в пищу богатый сахарами сок растений. В свою очередь, жучки являются для Buchnera отличным домом. Взаимовыгодная ситуация. Ученые построили эволюционное семейное древо и для Buchnera, и для тлей. Сравнивая структуру обоих деревьев, мы видим, что они почти одинаковы. Вероятность того, что это случайное совпадение, стремится к нулю. Единственный возможный ответ – совместная эволюция: тля и живущие в них бактерии [2, см. с. 42] взаимно влияли на развитие друг друга в течение более чем 100 миллионов лет.

Если присмотреться к микробному млекопитающих, видно, что гены, отвечающие за производство красных кровяных телец и белков в теле человека, сравнимы с похожими генами других млекопитающих. Ваши бактерии – часть большого семейного древа. В этом смысле микробный состав может считаться наследственным маркером и помогает объяснить, почему вы больше похожи на обезьян, а не на коров [3, см. с. 42]. Возникает интересный вопрос: это происходит из-за животных или микробных «генов»? Люди всегда считали, что верен первый вариант, но не исключено, что и второй. Скорее всего, в какой-то степени и то и другое.

Как уже упоминалось, ваше тело – это экосистема, такая же, как коралловый риф или тропические джунгли: сложная организация, состоящая из взаимодействующих живых организмов. И для любой из них критически важно разнообразие. В джунглях, например, это все виды деревьев, лиан, кустов, цветковых растений, папоротников, водорослей, птиц, пресмыкающихся, земноводных, млекопитающих, насекомых, грибов и червей. Широкое разнообразие защищает обитателей экосистемы, потому что благодаря их взаимодействию возникают прочные сети захвата и круговорота ресурсов. Его потеря приводит к болезни или даже к коллапсу системы, если погибает «краеугольный камень» – вид, который оказывает непропорционально большое в сравнении с численностью влияние на окружающую среду. Например, когда семьдесят лет назад из Йеллоустонского парка выгнали волков, пережила взрывной рост популяция лосей. Внезапно они смогли безопасно поедать (и в конце концов уничтожили полностью) ивы, растущие на берегах речек. Численность певчих птиц и бобров, которые строили из ее веток гнезда и плотины, резко сократилась. Эрозия рек заставила водоплавающих птиц покинуть регион. Из-за отсутствия убитой волками падали на спад пошла популяция воронов, орлов, сорок и медведей. Увеличение численности лосей привело к уменьшению численности бизонов из-за конкуренции за пищу. В парк вернулись койоты и поели мышей, которыми раньше питались многие птицы и барсуки. И так далее и так далее – сложная сеть взаимодействий разрушилась, когда из нее вынули краеугольный камень. Эта концепция применима и к «большому» миру, и к вашему микробному, где история исчезновения желудочной бактерии Helicobacter pylori,


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2 3
На страницу:
3 из 3