На чем пытаются осуществить научный прорыв в неврологии и нейроинженерии Илон Маск и его команда признанных экспертов в нейронауках? Они создали что-то принципиально новое и нестандартное? Нет и еще раз нет! Идеи компании Neuralink не «появились из ниоткуда» и опираются на множество исследований, посвященных гибким «нитям», но превосходят аналоги по безопасности и объему собираемых данных. Это новый биотехнологический уровень продолжения ранее существующих исследований Брауновского университета по проекту BrainGate. «Нити-электроды из полимера» и робот для их имплантации – это логичное завершение этого проекта. BrainGate использует массив микроэлектродных игл, в которых размещается до 128 электродов, и уступает Neuralink по объему извлекаемых из мозга данных. Более того, иглы жесткие, что ограничивает число доступных нейронов, мешает долгосрочной работе и небезопасно для человека, поскольку мозг движется внутри черепа. Тонкие полимерные «нити», по мнению исследователя из Neuralink Филиппа Сабеса, решают эти проблемы. «Нити» из-за их гибкости сложнее внедрить в кору головного мозга, чем иглы, поэтому Neuralink разработала специального робота, похожего на «смесь швейной машинки с микроскопом». Он способен вставлять по 6 «нитей» в минуту с помощью специальных тонких игл и полностью автоматизирован. Тем не менее нейрохирург сохраняет полный контроль над операцией и может регулировать процесс вручную. Робот размещает «нити» с электродами в непосредственной близости от нейронов, а система компьютерного зрения позволяет избежать проникновения иглы в кровеносные сосуды на поверхности мозга – это снижает вероятность воспалительной реакции организма на «внешние объекты». Чтобы установить имплантаты, хирургам приходится просверливать четыре 8-миллиметровых отверстия в черепе, но инженеры Neuralink считают, что в будущем для проникновения сквозь череп можно использовать лазер.
По мнению Илона Маска, одной из основных проблем взаимодействия человека с искусственным интеллектом (ИИ) является пропускная способность. Neuralink избавляет человека от «прослойки» между мыслью и компьютером, т.к. отдавать команды через нейроинтерфейс куда быстрее, чем голосом или ручным вводом. Но обилие информации и сложность ее считывания через нейроинтерфейсы – это проблема, которую Neuralink хочет решить с помощью специального чипа. Он в реальном времени принимает сигналы с «нитей», усиливает их, очищает от шумов и оцифровывает. У Neuralink есть 2 прототипа чипа с разными характеристиками по числу обрабатываемых каналов и мощности системы. Сейчас чип может передавать данные только через проводное соединение по USB-C, но цель компании – беспроводная система, которую назвали N1 Sensor. По задумке инженеров, N1 Sensor будет встраиваться в организм человека и передавать данные по беспроводной связи внешнему устройству с аккумулятором, расположенному за ухом. Датчиков будет 4: три в моторной области коры мозга, а последний – в соматосенсорной системе. Управлять N1 Sensor можно будет через iPhone. У чипа есть еще одно применение: его разработали так, чтобы не только обрабатывать данные, но и стимулировать клетки мозга. Прямая стимуляция мозга с помощью имплантированных электродов позволяет лечить расстройства двигательной системы и эпилепсию. Но большинство нейроинтерфейсов не адаптируются к потребностям и ощущениям пациента. Нейрохирурги и инженеры считают, что из-за этого недостатка стимуляция мозга не работает для лечения депрессии. Neuralink умеет анализировать данные с помощью машинного обучения и может адаптировать стимуляцию к потребностям пациента. В исследованиях компания Neuralink признает, что «пока не демонстрирует эти возможности».
Разработки компании Neuralink были оттестированы на грызунах и трех поросятах. В исследовательской работе Neuralink рассказывает о 19 операциях на крысах, в которых «нити» успешно разместили в 85,5% случаев, установив 1280 электродов (1020 работали одновременно). Крысы обходили прямоугольную пластиковую клетку, наполненную деревянной стружкой, и искали кусок пармезана. Провод, подключенный к порту USB-C, передавал мозговую активность крысы исследователям: потрескивание нейронов было слышно через динамик, а программа записывала и измеряла силу мозговых колебаний. Собираемых данных было в 10 раз больше того, что по силам самым мощным современным датчикам, пишет Bloomberg. 15 июля компания показала журналистам The New York Times подключенную к лабораторным крысам систему, которая считывала информацию с 1500 электродов. Это в 15 раз лучше, чем в других современных системах, и такого объема данных достаточно для научных исследований и медицинских применений, как пишет издание. В исследовании и официальной презентации приматы не упоминаются, но на секции вопросов и ответов И. Маск заявил, что обезьяна «смогла управлять компьютером с помощью своего мозга».
11 апреля 2021 г. в официальном ютьюб-аккаунте Neuralink появилось видео, на котором макака по имени Пейджер с помощью нейроинтерфейса управляет компьютером. Эксперимент на вид довольно прост. В качестве положительного подкрепления используется банановый смузи, подающийся по длинной трубочке. Если обезьяна наводит курсор на цветной квадрат, она получает порцию лакомства. Игра довольно простая: нужно попасть указателем в цель. Поначалу нейроинтерфейс калибруется: подопытное животное управляет курсором с помощью джойстика, а компьютер анализирует возникающую при этом электрическую активность мозга. Но затем происходит настоящая фантастика – джойстик физически отключается от компьютера. Обезьяна продолжает двигать им, однако на указатель этот сигнал уже не передается, управление им осуществляется интерфейсом «мозг – компьютер». Задание по-прежнему выполняется, поскольку нервные импульсы остаются теми же и Neuralink просто интерпретирует их в движение курсора на экране. Анализ этого материала представлен на сайте «Врачи РФ» (https://vrachirf.ru/concilium/87996.html?utm_source=vrch&utm_medium=dstr_35&utm_campaign=msg_10099 (https://vrachirf.ru/concilium/87996.html?utm_source=vrch&utm_medium=dstr_35&utm_campaign=msg_10099)).
При внимательном просмотре ролика можно заметить, что в некоторых случаях указатель попадает на квадрат даже раньше, чем рука макаки перемещает джойстик. Ну а пару раз система дает небольшой сбой и прицелиться получается не сразу.
Зрителям показали и вторую игру, которая еще интереснее. В ней джойстик совсем не используется: обезьяна должна управлять ракеткой в пинг-понге только мысленно. По словам диктора, это развлечение обезьяна Пейджер любит гораздо больше.
Как отмечает закадровый голос, имплантация нейроинтерфейса состоялась примерно за 6 недель до съемок. Пейджер получила сразу 2 модуля Neuralink, по одному на каждое полушарие. Причем единственное, что выдает недавнюю операцию, – не до конца отросшие волосы. Сами небольшие «таблетки» многообещающего устройства внедряются в череп заподлицо с внешней поверхностью кости. После заживления швов имплантация интерфейса «мозг – компьютер» внешне будет совсем незаметна. Имплантат Neuralink заряжается беспроводным путем и подключается к любому совместимому устройству по bluetooth. Набор данных, который он передает, можно увидеть в нескольких кадрах первого ролика или гораздо подробнее во втором. На нем спектрограмма считываемых нейроинтерфейсом сигналов синхронизирована с записью играющей в пинг-понг обезьяны. Это дополнительное видео компания разместила в своем блоге, подробно описывающем текущие достижения проекта. Впечатляющий ролик заканчивается активной агитацией стать частью команды Neuralink. По словам диктора, несмотря на все достижения стартап по-прежнему сталкивается со множеством трудностей, требующих при решении творческого подхода. И это неудивительно. В подобных исследованиях все далеко не всегда идет по плану, к тому же специфика разработок на стыке информатики и медицины требует множества согласований, разрешений и большой доли осторожности в своих действиях.
Когда начнутся испытания на человеке, сказать трудно. Маск, дополняя новость Neuralink, в своем твиттере пообещал, что использующие технологию парализованные пациенты смогут пользоваться смартфоном быстрее многих здоровых людей. И анонсировал возможность управления обездвиженными из-за нарушения нейронных связей конечностями с помощью Neuralink. Но в плане сроков он стал гораздо осторожнее и просто не называет конкретных цифр.
На деле стартапу никто не даст проводить операции на людях, пока Neuralink не пройдет серию испытаний, доказывающих безопасность процедуры. Остается ждать, когда научные работы за авторством команды Маска завершат все круги рецензирования. Только после этого можно надеяться на обещанный триумф технологий над хрупкостью человеческого тела (https://naked-science.ru/article/hi-tech/neuralink-pokazala-makaku-kotoraya-igraet-v-kompyuter-nye-igry-bukvalno-siloj-mysli (https://naked-science.ru/article/hi-tech/neuralink-pokazala-makaku-kotoraya-igraet-v-kompyuter-nye-igry-bukvalno-siloj-mysli)). Также компания готова провести первые испытания на людях, но для этого нужно найти пациентов и убедить в безопасности Министерство здравоохранения США.
Специалисты компании Neuralink считают, что их нейроинтерфейс поможет в изучении и лечении неврологических болезней и нарушений работы мозга, восстановлении моторных функций, лечении слепоты, паралича, эпилепсии, депрессии, болезней Паркинсона и Альцгеймера. С помощью Neuralink парализованные люди смогут управлять телефонами и компьютерами силой мысли, например писать сообщения, просматривать сайты или «телепатически» общаться, как только «технология заработает в обоих направлениях».
После презентации исследователи и ученые разобрали поэлементно опубликованное Neuralink исследование и разделились во мнениях насчет работоспособности и безопасности проекта. Роботизированная платформа с интеграцией электродов и анализом активности с помощью специального программного обеспечения (ПО) – это прорывной анонс, но очень рано говорить о том, насколько быстро получится безопасно использовать Neuralink на людях, как пишет The Wall Street Journal. Потенциал повреждения тканей мозга может стать одной из ключевых проблем, с которой столкнется Neuralink при отправлении заявки на клинические испытания в Министерство здравоохранения США, как считает GeekWire. Например, исследование не получало рецензий; в нем нет информации о том, как долго «нити» могут находиться в мозге человека, нет ли воспалительной реакции на их внедрение и насколько длительна стабильная обработка сигналов нейронов. По мнению нейробиолога Лорена Франка из Калифорнийского университета, крайне важно получить эту информацию, прежде чем разрешать испытания на людях. С ним соглашается разработчик нейроинтерфейсов Тим Харрис – современные технологии, по его словам, не приблизились к полноценному протезированию нейроинтерфейсов. Также Bloomberg замечает, что даже если имплантаты функционируют должным образом, компании еще нужно показать, что она может делать с ними и с полученной информацией что-то полезное и безопасное. Например, предоставить методы лечения болезней с помощью Neuralink. Но компания Neuralink заявила, что сейчас изучает реакцию мозга на внедрение «нитей» и их отторжение, но пока «не готова обнародовать данные». Проф. Фрэнсис Крик из Института биологических исследований в Калифорнии отметил: гибкость «нитей» – это «существенный шаг вперед» для нейроинтерфейсов.
Рис. 12. а – внешний вид имплантируемых «нитей» нейроинтерфейса;
b – общая схема установки нейроинтерфейса Neuralink;
c – робот-нейрохирург компании Neuralink, d – устройство подачи игл для установки нитей; e – прототип чипа с USB-C; f – нейроинтерфейс компании Neuralink у экспериментальных животных (крысы); g – макака по имени Пейджер с помощью имплантируемого интерфейса
«мозг – компьютер» управляет компьютером
Рис. 13.а – варианты создания малоинвазивных нейроинтефейсов,
основанных на принципах съема ЭЭГ; b – основные известные способы
снятия биологической информации с человека с инвалидностью
Рис. 14. Бионический протез руки, напечатанный на 3D-принтере
Но при этом компании Neuralink нужно доказать, что изоляция «нитей» продержится в мозговой среде достаточно долго, т.к. солевой раствор внутри мозга разрушает многие виды пластиков. Нейробиолог Эндрю Хайрс, разобравший исследование Neuralink в серии твитов, впечатлился проделанной работой и подчеркнул, что продукт компании «выходит за рамки современного уровня техники». Мы абсолютно согласны с этим утверждением, но, к сожалению, ультрапередовой уровень техники создания нейроинтерфейсов не решает проблему отсутствия нужной информационной теории устройства мозга, и поэтому вряд ли подобный интерфейс между мозгом и компьютером сможет обеспечить устойчивую информационную связь.
Варианты создания малоинвазивных нейроинтефейсов, основанных на принципах съема ЭЭГ, представлены на рис. 13.
Управляемые биоимпульсом человека протезы рук (рис. 15а) и ног (рис. 15d, e), а также управление роботизированным устройством для работы инвалида на компьютере (рис. 15b) уже стали шедеврами современной мировой биоинженерной мысли. Одними из наиболее совершенных протезов голени на сегодня считаются BiOM Ankle компании BionX (США), основанной проф. Массачусетского технологического института (MIT) Хью Хэрром (Hugh Herr). Миоэлектрические протезы BiOM Ankle оснащены микропроцессорами и сенсорами, благодаря которым становится возможной мгновенная автоматическая регулировка угла наклона стопы и уровня амортизации (рис. 16).
Верх совершенства и современных нейроинженерных достижений продемонстрировали «управляемые мыслью» протезы рук у пациентов с ампутированными конечностями, представленные специалистами Американского оборонного агенства перспективных технологий DARPA. Их достижения в 2017 г. признаны лучшими образцами нейроинтерфейса в создании биоуправляемых бионических протеозов (рис. 17).
Рис. 15. Практическая реализация технологии нейроинтерфейса в создании нейробиопротезного оборудования и систем реабилитации инвалидов
Рис. 16. Биоуправляемые протезы ног. Одними из наиболее совершенных протезов голени на сегодня считаются BiOM Ankle компании BionX (США), основанной проф. Массачусетского технологического института (MIT) Хью Хэрром (Hugh Herr), который в нем выступает на конференции ТОD (на снимке). Миоэлектрические протезы BiOM Ankle оснащены микропроцессорами и сенсорами, благодаря которым становится возможной мгновенная автоматическая регулировка угла наклона стопы и уровня
амортизации
Рис. 17. а, b – периферийный нейроинтерфейс с помощью имплантируемых микроэлектродов соединяет нервные волокна руки с электроникой протеза от ДАРПА (США) – «искусственная рука»; с – периферийный
нейроинтерфейс с помощью имплантируемых микроэлектродов
соединяет нервные волокна, иннервирующие мышцы груди пациента,
с электроникой протеза от ДАРПА (2017—2018)
Компания Touch Bionics (Великобритания), выпускающая миоэлектрические протезы кисти и пальцев под маркой i-limb, представила на мировом конгрессе Международного сообщества по протезированию и ортопедии ISPO-2015 (22—25 июня 2015) новую версию искусственной руки – i-limb quantum, основанную на технологии нейроинтерфейса (рис. 18). Функциональность i-limb реализуется с помощью программного обеспечения, описывающего набор стандартных движений и захватов и позволяющего регулировать силу сжатия. Новый проект i-limb quantum включает управление простыми жестами: чтобы выбрать нужный захват, носитель делает движение по одному из 4 направлений.
Таким образом, очевидно, что технологии нейроинтерфейса – самые продвинутые технологии в нейроинженерии, и они добились самых внушительных результатов. Однако большинство ученых и больших научных коллективов выдают желаемое за действительное, и мы слышим по радио и видим с экранов телевидения и в интернете, как самыми различными путями исследователи пытаются снять объективную информацию с головного мозга человека и передать ее в компьютер и обратно.
Рис. 18. Протезы i-limb используют запатентованную технологию,
позволяющую считывать мышечные импульсы
Обобщая все вышеизложенное, можно смело утверждать, что для целей создания разных типов нейроинтерфейсов разными научными коллективами используются различные электрические сигналы, получаемые аппаратными средствами от нервной ткани человека. В одних случаях источником взаимодействия от мозга служат данные электроэнцефалографии, электрический сигнал от внутримозговых микро- и наноэлектродов, имплантированных в кору головного мозга, а также используются распределенные электромагнитные сигналы от различных типов нанонапылений (нанопыль) на кору мозга или от имплантированных в кости черепа «биоболтов» или «биопортов», у которых есть расположенные над корой головного мозга электроды. В других случаях осуществляется отведение сигнала от нейростимулятора, имплантированного в проекции спинного мозга, или от электронейромиограммы периферических нервов, иннервирующих определенные группы поперечно-полосатых мышц. Но несмотря на столь разнообразные источники получения информационных сигналов от нервной ткани человека, пока даже близко нет реальных результатов фактического нейро-машинного взаимодействия между мозгом человека и компьютером. Технологически реализация феномена нейроинтерфейса пока не представляется реальной! Постоянные информационные «вбросы» о том, что где-то наконец-то осуществлена реальная установка интерфейса между мозгом обезьяны, находящейся в США, и компьютером, находящимся в Японии, на другом конце Земного шара, и при этом биопотенциалы мозга американской обезьяны управляются биопотенциалами головного мозга японской обезьяны через осуществленный компьютерный нейроинтерфейс, – на самом деле являются очередными рекламными, фейковыми новостями. Это связано с большими надеждами человечества на потенциальную возможность передачи мыслей на расстоянии. Именно поэтому это самые высокофинансируемые и самые многообещающие исследования в области нейроинженерии и считается, что именно они обеспечат тот научный прорыв, на который рассчитывает вся мировая научная общественность.
Нейротехнологии функционального объединения живых и неживых элементов нервной ткани. Эти технологии условно занимают второе место среди ведущих нейроинженерных технологий в мире. Исследователи из Института биохимии Макса Планка (Германия) соединили ряд живых нервных клеток с элементами кремниевого чипа. Так была образована схема «кремний – нейрон – нейрон – кремний». Входной электрический импульс приводил в возбужденное состояние первый нейрон, тот посылал сигнал второму, второй подхватывал сигнал и «передавал» его на транзистор. В эксперименте использовались нейроны улитки Lymnaea stagnalis из-за больших размеров ее нервных клеток, доступных для манипуляций обычными инструментами.
Нейроинженерия давно пыталась достичь подобного результата: гибридные схемы из живых и неживых элементов в будущем позволят заменять поврежденные биомеханизмы на искусственные имплантаты, управляемые нервной системой. Нейрофизиологи из Технологического института Джорджии (США) совместно с искусствоведами из Университета Западной Австралии научили крысиные нейроны «рисовать». Для исполнения эксперимента американцы взяли кусок мозга грызуна и подсоединили его нейроны к 60 электродам, а те подключили к компьютеру. ПК читает нейронные сигналы в Америке. Переданные по электронной почте потоки сознания крысиных нейронов изливаются на бумагу при помощи 3 цветных фломастеров уже на Австралийском континенте (Петренко, Светлова, 2014). Можно ли это явление назвать нейроинтерфейсом? Наверное, нет. Хотя сам принцип соединения живой нервной ткани и неживой материи соответствует духу фундаментальных нейроинженерных исследований.
Европейские ученые разрабатывают инвалидное кресло, управляемое импульсами мозга. Пользователи таких кресел будут надевать на голову «шапку» – специальное устройство, снабженное электродами, улавливающими малейшие электрические колебания на поверхности головы. Современные технологии позволяют преобразовать эти импульсы в команды, управляющие движением кресла. Разработка такого инвалидного кресла началась недавно, но опыты ученых уже дают положительные результаты. Пока вся система построена на основе простейшего робота на колесах, подобного радиоуправляемым игрушкам. При помощи специальной электронной «шапки» ученым удалось заставить его двигаться в 3 направлениях – налево, направо и вперед, как сообщает BBC.
Когда человек хочет двигаться в каком-то направлении, его мозг порождает определенные импульсы. Эти импульсы всегда одинаковы для одного и того же направления движения. Электронная «шапка» улавливает эти импульсы при помощи электроэнцефалографии (ЭЭГ) и передает полученные данные в компьютер. Специальная программа, разработанная учеными, анализирует полученные данные и преобразовывает их в команды, которые затем передаются роботу (http://news.proext.com/tech/11999.html (http://news.proext.com/tech/11999.html)). Сам робот запрограммирован так, что он начинает движение или поворачивает куда бы то ни было не сразу, а только когда есть такая возможность. Таким образом, он никуда не врезается. Кроме того, в робота встроены инфракрасные датчики, которые распознают различные объекты и помогают роботу избежать столкновения с ними.
Британский проф. Кевин Уорвик (K. Warwick) сообщил фонду «Наука за продление жизни», что на факультете кибернетики Университета Рединга (Великобритания) появилось необычное существо по имени Гордон, который в буквальном смысле является крысороботом. Внутри искусственной конструкции содержится питательная среда с десятками тысяч нейронов, выделенных из мозга живой крысы. Гордон – очередной продукт знаменитого редингского проф. Кевина Уорвика, который в этом эксперименте объединился с биологом, проф. Школы фармацевтики того же университета Беном Уорлли (B. Worlly). Потенциальные возможности «квазимозга» Гордона соответствуют лишь уровню продвинутых насекомых (скажем, пчел или ос). Однако даже такая, сильно облегченная версия крысиного мозга, представленная британскими учеными, не может не будоражить воображение всех ценителей жанра science fiction, хотя это уже не первая попытка создания подобных гибридов. Американец Стив Поттер из лаборатории нейроинженерии Технологического института штата Джорджия (Атланта) еще в 2003 г. сконструировал гибридное устройство (hybrot), содержащее несколько тысяч крысиных нейронов, а годом позже Томас Де Марс из Университета Флориды создал «мозг в чашке», состоявший уже из 25 тыс. крысиных нейронов.
Крысоробот Гордон из Рединга по количеству нейронов в мозге значительно умнее своих собратьев, но главная новизна эксперимента Уорвика – Уолли в том, что им впервые удалось установить непосредственный контакт с живым мозгом, находящимся в искусственной оболочке. Непосредственным показателем биоэлектрической активности нервных клеток при передаче нейронных импульсов выступают спонтанные перепады напряжения (т.н. биоэлектрический потенциал), определяемые разностью электрических потенциалов между 2 точками живой ткани. И именно такие электрические сигналы четко фиксировались на компьютерных экранах наблюдателей. Ключевой аспект исследований, по мнению авторов, заключался в понимании того, что же такое память. На данной модели исследователи по-разному экспериментируют с «маленьким живым мозгом», находящимся внутри робота. Они помещают робота в различные положения, заставляют его познавать окружающую среду и выясняют, насколько хорошо сохраняются эти воспоминания в мозге. Следующий шаг должен усилить эти воспоминания – в перспективе это может помочь в лечении болезни Альцгеймера, а также людям, пораженным инсультом. Мозг имеет приблизительно 100 тыс. нейронов, которые растут на множестве электродов. Коммуникация происходит как через эти электроды, которые фиксируют сенсорную информацию от тела робота, так и через «двигательные» команды, исходящие от мозга и поступающие на его колеса. Авторы эксперимента действительно находятся в контакте, потому что мозг удается стимулировать и он отвечает на их стимулы. Постепенно, по мере того как мозг учится управлять «телом» – роботом, у него возникает привычка к этой деятельности, и эта привычка усиливает образование связей между нейронами.
Нейротехнологии искусственного протезирования участков головного и спинного мозга. Обсуждая эти нейротехнологии, обратим внимание на нейроинженерные работы проф. Теодора Бергера (Theodore W. Berger) (рис. 19), который считается основоположником искусственного нейропротезирования в современной нейроинженерии.
Он проводит эксперименты по клеточным (молекулярным) механизмам пластичности синаптических связей и влиянию этой пластичности на функциональную динамику гиппокампа на сетевом и системном уровнях; является руководителем группы разработчиков технологии протезирования мозга в Центре нейроинженерии Университета Южной Калифорнии. Считается, что он якобы первым заменил гиппокамп крысы чипом в 2009 г. (рис. 20). Другими словами, считается, что именно он и его группа создали «искусственный гиппокамп». Эта технология где-то граничит с технологиями нейроинтерфейса. В настоящее время его группа разрабатывает технологию «нейронно-кремниевого интерфейса», используя многоабонентскую электродную матрицу на основе кремниевых соединений и методы выращивания тканевой культуры для последующей имплантации аппаратных моделей в мозг и замены поврежденной или дисфункциональной нервной ткани.
Рис. 19. Теодор В. Бергер (Theodore W. Berger), проф. инжиниринга Фонда Дэвида Паккарда (David Pakkard), проф. биомедицинской инженерии и нейробиологии, директор Центра нейроинженерии (CNE) Университета Южной Калифорнии (USC), доктор философии по физиологической
психологии Гарвардского университета
Чтобы понять масштаб проекта, на который нацелились Томас Бергер и его команда, нужно сделать определенное отступление и дать небольшие пояснения. Работа Т. Бергера направлена на протезирование функции памяти и на искусственное восстановление утерянной памяти. И хотя считается, что он «создал и имплантировал первый в мире искусственный гиппокамп», полученный им и его командой, результат лишь условно можно считать реальным восстановлением утраченной памяти.
При этом надо понять, что в современных науках о мозге не существует четкого понимания и строго научного объяснения феномена, которое мы называем памятью, и нет точного научного описания того, где она локализуется. Современные нейрофизиологические представления о памяти очень нечеткие, и большинство нейроспециалистов считают, что память равномерно распределена по коре головного мозга и локализована про всему мозгу и в гиппокампе. Человеческая память бывает двух видов – кратковременная и долговременная.
Рис. 20. Схема протезированния гиппокампа с заменой его на нейронные коды, представленная Томасом В. Бергером в целом ряде специализированных журналов по нейроинженерии (Neuronal Engineering, 2013;
J. Neural Eng. – 2012. №9; 2011. №8)
Кратковременная память характеризуется малым объемом и небольшим (порядка 30 с) временем хранения, причем главную роль в образовании кратковременной памяти играют лобные доли головного мозга. У долговременной памяти и объем, и время хранения информации практически не ограничены. В качестве кладовых этого вида памяти выступают уже височные отделы коры. Впрочем, выделить участки коры, где хранится память о тех или иных специфических событиях, никому пока так и не удалось. В качестве возможного объяснения этих безуспешных попыток учеными было сделано предположение, что записи о том или ином конкретном событии дублируются в разных участках коры головного мозга. Косвенно это подтверждают эксперименты американца Карла Лешли (Karl Lashley), проведенные в конце 1950-х гг.: сначала он обучал крыс проходить через лабиринт, а затем поочередно удалял различные части их мозга. Как оказалось, вне зависимости от того, какая часть головного мозга удалялась, крысы всегда сохраняли способность ориентироваться в лабиринте (проверять их реакцию на полное удаление мозга дотошный исследователь не стал). Удивительно, но именно эти научные представления являются доминирующими в нейрофизиологии, нейропсихологии и клинической медицине последние 60—70 лет. Тогда с Карлом Лешли работал Карл Прибрам (Karl Pribram), известный американский нейрофизиолог и экспериментатор. Они вместе изучали поведение экспериментальных крыс, обученных правильной навигации в лабиринте, он тоже хирургическим путем удалял постепенно разные части головного мозга этих животных, и, к его удивлению, память животных на выполнение программы прохождения лабиринта практически не страдала от объема удаленного мозга. И только тогда, когда он пересекал гиппокамп, животные теряли ориентацию и не могли выполнить заученную программу прохода по лабиринту. Он пришел к заключению, что количество удаленного головного мозга у животных не влияет на объем памяти и что память равномерно распределена по всему мозгу и локализована преимущественно в гиппокампе, т.к. при его повреждении (удалении) полностью теряется способность что-либо запоминать.