A = A * M = B или А = А : М = В, где А – число, М – много раз, В – другое число
Доказательство:
Пусть А первоначально равнялось 2. Увеличив число А в пять раз, согласно формуле A = A * M = B мы получим 2 = 2 * 5 = 10. И наоборот.
Пусть А = 4. Уменьшив число А в два раза, согласно формуле A = A * M = B мы получим 4 = 4 : 2 = 2.
Следовательно, число А путем увеличение (уменьшения) привело нас к числу В.
Пример. После дня рождения у Ромы было 10 машинок. Сколько первоначально было машинок у Ромы?
Решение: В = 10, М – неизвестно, А –?
Подставим значения в формулу A = A * / M = B и получим А = А * / М = 10. Не зная данных по увеличению или уменьшению машинок, мы не можем узнать первоначальное количество машинок.
Ответ: Мы не можем узнать первоначальное количество машинок.
Теорема 11. Любая плоскость представляет собой сумму значений Xn. При изменении значения n меняется сама плоскость.
Доказательство:
Квадрат имеет 4 вершины или Х4
Треугольник 3 вершины или Х3
Прямая – Х2
Круг – Хn
В начале мы имели круг – Хn. Если Хn уменьшить на множественное значение n, то мы рано или поздно получим Х4 (квадрат).
Х4 – 1 = Х3 (треугольник)
Х3 – 1 = Х2 (прямая)
Х2 – 1 = Х1 (точка)
Следовательно при увеличении точек Х1 увеличивается и сама плоскость.
Пример. Андрей на уроках труда вырезал из квадрата треугольник. Сколько треугольников у него получилось?
Решение: Квадрат Х = 4, треугольник Х = 3, то 4 – 1 = 3, где 1 – это прямая, которая имеет 2 конечные точки. Тогда 4 (квадрат) – 2 (прямая) = 2 (два треугольника)
Ответ: На уроках труда Андрей вырезал из квадрата два треугольника.
Теорема 12. Любые противоположности имеют две плоскости A и B, сменить значение которых может сила S.
А || B, но А =В * S или А * S = B или А * S = b * S
Доказательство:
Пусть А – плоскость дна куба, В – плоскость крышки куба, А || В не пересекаются.
Если сила S имеет возможность реагировать на силу А или силу В, то в любой момент А и В могут стать одной плоскостью. Допустим S – удар по крышки куба, тогда крышка упадет на дно куба и A = B * S.
Пример. Рабочий на стройке нес кирпич, который выпал из рук и раскололся. На какие фигуры раскололся кирпич?
Решение: Кирпич имел две плоскости А и В. В результате падения на него подействовала сила S согласно формуле А * S = B или А * S = b * S. Таким образом, кирпич разбился на новые плоскости.
Ответ: Кирпич раскололся на новые плоскости.
Теорема 13. Треугольник Х3 всегда может превратиться в круг Хn, потом вернуться в свою первоначальную форму Х3, пока для этого будут условия. Также происходит и с другими фигурами.
Хi + 1 = Хn и Хn = Хn–i, где i – значение фигуры
Доказательство:
Если треугольник – Х3, а круг – Хn, то Хn–1 – это прямая, Хn–3 – это треугольник. И обратно треугольник Хn+3 = Хn, где Хn – круг.
Пример. Марина вырезала из круга треугольник, а потом из треугольника круг. Сколько треугольников получилось у Марины?
Решение: Хn–3 = Х3 = Хn + 3 = Хn, где Хn – это круг.
Ответ: У Марины получился круг.
Теорема 14. Параллельные линии представляют собой прямые. Как только одна прямая Х1 длиннее другой Х2, то параллельность линий сменяется одной прямой линией Х1.
Х1 > Х2 = Х1
Доказательство:
Одна прямая имеет точки Х1 и У1, вторая – Х2 и Y2. Если Х1 > Х2, а У1 > Y2, то получается что Х1У1 > Х2У2, а значит Х1Y1 – образует линию длиннее Х2У2 и представляет собой одну прямую с точками точки Х1 и У1.
Пример. Три мальчика ехали на самокате по дороге. Первого позвала домой мама, второй остановился и всех дальше проехал третий мальчик. Где разминулись параллельные траектории мальчиков?
Решение: Представим траекторию каждого мальчика согласно условию, получим Х1У1 < Х2У2 < Х3У3, то есть параллельные траектории разминулись, когда Х1У1 < Х2У2.
Ответ: Параллельные траектории мальчиков, которые ехали на самокате по дороге, разминулись уже тогда, когда первого мальчика позвала домой мама.
Теорема 15. Поместить одну фигуру Мn–1 в другую Мn можно до бесконечности. Только фигуры должны быть с каждым разом меньше, то есть Мn–1 < Мn. Но любая фигура Mn, превышающая предыдущую Mn–1, может быть уменьшена.
Мn–1 < Мn < Мn–1
Доказательство:
Представим квадрат в виде М4, в квадрат поместили круг Мn, чтобы в круг поместить вновь квадрат М4, он должен представлять собой величину M4 < Мn < М4.
Пример. Дети вырезали несколько треугольников. Потом решили из треугольников вырезать новые треугольники, а из них уже круги. Могут ли дети из круга вновь вырезать треугольники?