Дерзкие мысли о климате - читать онлайн бесплатно, автор Лев Иванович Файко, ЛитПортал
bannerbanner
На страницу:
21 из 23
Настройки чтения
Размер шрифта
Высота строк
Поля

Если в любом поршневом двигателе не будет создано разности давлений на днище поршня, двигатель не заработает. Если на электролампу не будет подана разность потенциалов, она не засветится и т. д. Поэтому же наши двигатели, нагревательные приборы, равно как и холодильники и прочие механизмы, ныне почти все работают на искусственно создаваемых неравновесных процессах. Из них самым распространенным оказался способ сжигания топлива, создающий разность давлений от расширяющихся при взрыве газовых смесей или вскипающих жидкостей.

Итак, в любом случае промышленная энергетика требует неравновесных энергетических процессов и если они не находятся в окружающей нас природе, а тем паче, физические законы не поощряют их поиск, то люди, вынужденно создают их искусственно. Это исторически обусловлено пагубным зигзагом развития энергетики, что создало в области освоения природы парадоксальную ситуацию: не видя и не находя естественных неравновесных процессов в природе, люди перестали их искать и для искусственного воссоздания начали сжигать леса, рыть землю в поисках топливных ресурсов, строить громадные плотины на реках, чтобы создать перепады воды, вторглись в бездну микромира, найдя там энергетического джина, которого после чернобыльской катастрофы сами же уже серьезно опасаются. Топливная энергетика фактически уже зашла в тупик и не имеет будущего, если продолжит использовать традиционные источники тепла. Максвелловский «демон», способный без затрат энергии сортировать частицы однородной среды на холодные и горячие видимо тоже еще долго, если не навсегда, останется лишь мечтой физиков.

Об экологических, да и социально-экономических изъянах топливной энергетики, исходящих от мест добычи горючего по путям его транспортировки до необратимого сжигания в топках и двигателях, все уже хорошо наслышаны. Известно и то, что ресурсы топлива истощаются, хотя являются ценнейшим сырьём для химии, широко потребляющей их куда более рационально, чем путем безвозвратного уничтожения в топках и двигателях. Именно неотвратимость их уничтожения и его экологический вред являются самыми пагубными следствиями искусственно воссоздаваемых неравновесных процессов. Заметим, что «сила ветра», «сила текучей воды», «сила тяжести» – это еще не сами неравновесные процессы, а лишь их отражение, их следствия, реализуемые через свершение работы, как результата превращения энергии из одной формы в другую. Уверенно можно говорить о трех первопричинах, возбуждающих на Земле неравновесные энергетические процессы: светимость Солнца, периодичность нагревания и охлаждения земной поверхности и действие земного тяготения. Последняя, как мы уже знаем, мало известна, что опять же отразилось на неполноте научных представлений о природных неравновесных процессах, среди которых самой значительной остается необъясненность необратимости самого тяготения.

Напомним здесь о частично нам уже известном.

Периодичность освещения и затемнения земной поверхности равными промежутками времени в течение суток или года на (внетропических широтах) определяется вращением Земли вокруг собственной оси и по эклиптике вокруг Солнца. Периодическое нагревание и охлаждение, например, воздуха, на разных участках земной поверхности обусловливает в первом случае его тепловое расширение, во втором – уплотнение. Так возникает причина для возникновения неравновесного процесса, в данном случае из-за разности атмосферных давлений. Плотный воздух силой тяготения опускается вниз и устремляется к области менее плотного воздуха, вытесняемого той же силой тяготения вверх. Такое элементарное объяснение причин движения газообразных и жидких сред на Земле (и на планетах) тоже остается мало известным и поэтому может вызывать сомнения в правильности. Но в противовес ему невозможно найти другое объяснение. Поэтому нам ничего не остается, как заключить, что именно так или примерно так возбуждается движение неживых подвижных земных масс, то есть реализация природного неравновесного процесса в форме выполнения работы. Думаю, что этого пояснения вполне достаточно, чтобы отметить важнейшее преимущество естественных неравновесных процессов, а именно: их постоянную, ежесуточную или ежегодную возобновляемость, поистине вечную неистощимость их энергии, обусловленную относительной вечностью движения Земли вокруг Солнца, его настолько же вечной светимостью и относительной вечностью тяготения. Вечность тяготения я называю относительной потому, что верю в существование в природе адекватного ему отталкивания (разброса, взрыва) масс, сплоченных тяготением.

Из закона сохранения энергии и массы в рамках классического представления следует, что при описанном выше движении, ни энергия, ни масса нигде не теряются, а работа по их перемещению, в нашем представлении, имеет КПД 100 %. Умом и волею человека силу, выполняющую эту работу, оказывается можно использовать, и мы теперь имеем возможность догадаться, что именно ею движется парусник, вращаются гидротурбины ГЭС и т. д. Такая работа, как мы уже знаем, выполняется силой тяготения, а это значит, что тяготение само есть постоянно действующий источник энергии, выпавший из-за невнимания людей к данному процессу. Думаю, что если бы рассуждения ученых прошлых веков развивались в таком ключе, то они не поспешили бы отвлечь все внимание на тепловые машины. В результате чего и остались несовершенства отдельных положений термодинамики.

Давний опыт использования упомянутых выше природных сил (ветра, текучей воды и т. д.) дали основу для подсчета ресурсов энергии этих источников. Они оказались значительными, но сопоставимыми с тем количеством энергии, которое ныне вырабатывается человеком тепловыми двигателями и могут не обеспечить потребности общества в будущем. Вероятно, и это отразилось на упадке должного внимания науки к таким источникам энергии. Между тем методы подобных оценок нуждаются в столь же решительном переосмыслении, как и сам подход к использованию энергии природных неравновесных процессов. Человеку часто кажется, что он уже всё знает достаточно хорошо, чтобы вынести окончательный вердикт развитию того или иного научного направления. Но цена ошибок, недомыслий и заблуждений в столь важных проблемах, какой является энергетика, может быть не просто дорогой, но и пагубной для человечества.

Изложенное выше позволяет по-новому взглянуть на распространенность и мощность естественных неравновесных энергетических процессов в окружающем нас мире. В частности, обратим внимание на то, что основная масса топливных ресурсов (исключая уран, дейтерий и прочие виды неорганического происхождения) также являются результатом неравновесно давно усвоенной энергии живыми организмами. Мы сейчас твердо знаем, что накопление этой энергии идет намного медленнее, чем человек успевает снова рассеивать ее через топки и двигатели. Уже отсюда вырисовывается, а соображениями о судьбе экологии Земли укрепляется главнейшая генеральная цель энергетики будущего – во что бы то ни стало человечеству надо научиться использованию энергии естественных неравновесных процессов.

Для этого надо сначала четко понять существо естественных неравновесных энергопроцессов, а затем произвести их «инвентаризацию». Пока же применительно к естественной природе эта область знаний остается совершенно неизведанной. Ныне мало кто может назвать хотя бы несколько естественных энергетически неравновесных процессов, свойственных Земле. Между тем мы живем в мире неравновесных процессов. К ним относится и неравновесный теплообмен замерзающих водоемов, о чем я расскажу далее. А пока оценим другие неравновесные процессы.

На утилизацию колоссальной энергии от полной обратимости земного тяготения нам претендовать не дано. Но и те остаточные следы попутного действия сил тяготения, что побуждаются тепловыми процессами на поверхности Земли, о чем уже знаем, оказывается весьма внушительными и заслуживают внимания.

Обратимся к цифрам: всего к земной поверхности от Солнца поступает энергии 777×1015 кВт×ч за год. Из них примерно 150×1015 кВт×ч сразу отражается обратно в космос. Остающиеся 627×1015 кВт×ч обогревают Землю и одновременно рассеиваются в окружающее космическое пространство, почему и удерживается на внешних сферах стабильный тепловой режим (Рябчиков, 1972). Но потери излучаемого Землей тепла происходят таким образом, что энергия солнечных лучей, превращаясь через фазовые переходы воды в другие формы энергии и попутно участвуя в большой работе по движению внешних земных сфер, одновременно задерживается в них, отчего атмосфера, гидросфера и верхний слой литосферы оказываются существенно «подогретыми» парниковым эффектом. А это тоже гигантский неравновесный процесс, втягивающий в обращение колоссальное количество энергии. Подсчитано, что только тепловой энергии при испарении воды с Мирового океана расходуется, а при конденсации пара снова высвобождается в 6000 раз больше, чем вырабатывается человечеством. При этом существенной энергетической «прибавкой» становится потенциальная энергия падающих из атмосферы водяных капель, которая человеком лишь малой долей используется на гидроэлектростанциях – практически единственных серьезных энергетических устройствах, использующих не столько искусственный, сколько именно природный неравновесный процесс. И вот опять парадокс. Гидроэнергетика – эта абсолютно экологически безвредная, вовсе не требующая никаких топлив и не дающая никаких отходов и выбросов в атмосферу, форма утилизации постоянно возобновляющейся энергии, вдруг тоже стала объектом самых острых нападок со стороны защитников окружающей среды. Почему? Давно известно, что любое доброе дело легко загубить бездумным исполнением. То же случилось и с нашими гигантами гидроэнергетики, построенными в европейской части СССР. Здесь труд талантливых инженеров оказался скомпрометирован просчетами высоких руководителей. Гигантомания в гидроэнергетике неизбежно приводит к затоплению огромных площадей, особенно на равнинных территориях, водохранилищами, исключающими из сельскохозяйственного использования столь же значительные площади и вызывающими многие побочные сложности не только в экономике, но и в окружающей природной среде. Мы уже убедились, что развитие производственных сил всегда оборачивается каким-то ущербом природе, но в данном случае в жертву принесен ущерб и тому и другому, а экономике даже больше. И не надо путать, где пострадала экология, а где экономика. Волжским каскадом затоплено миллионы гектаров сельскохозяйственных угодий, тысячи населенных пунктов. Здесь очевидный проигрыш экономики. Экология выиграла за счет сокращения задымленности атмосферы и исключения эквивалентной добычи топлива, но проиграла за счет того, что под снесенные поселки и освоение земель для сельскохозяйственного освоения пришлось снова отторгать территории от дикой природы. Очень много беспокойств это принесло людям, вынужденным покидать родные углы. Сложилась и начала гулять по стране общая неприязнь к гидроэнергетическим станциям. Как говорят, обжегшись на молоке, люди стали дуть на воду стали бояться всякой новой ГЭС.

И вот далекий и глухой район Якутии за полярным Кругом – Верхоянье. Здесь разведаны и начали осваиваться богатые месторождения цветных металлов, в частности олова, золота, и много ещё, что крайне ныне необходимо для обеспечения благополучия народного хозяйства. К сожалению, здесь нет энергии, нет топливных ресурсов, нет дорог, по которым можно было бы подвозить уголь или жидкое горючее. Но есть реки, несущие необходимое и даже большее количество энергии. Разработан проект ГЭС на реке Адыче, правом притоке Яны. Адычанская ГЭС с проектной мощностью 500 мегаватт, при плотине 100-метровой высоты, где образуется водохранилище площадью 157 тыс. га, которое накрывает 84 тыс. га малопродуктивных лугов, 74 тыс. га чахлого леса и десять захудалых поселков с населением в 2 500 человек. Такой экологический ущерб в сопоставлении с очевидной выгодой оказывается вполне оправданным. Но вокруг Адычанской ГЭС возник протест «защитников» природы, выходящий за рамки здравого смысла. Или лучше будет ранить Землю новыми угольными копями в обжитой Центральной Якутии, строительством дорогостоящей железной дороги, а потом коптить небо, отравляя всё вокруг ядовитыми выбросами? Бороться за неприкосновенность природы, не столько на деле, сколько на словах, стало модным. Для этого не надо даже понимать и знать, как беречь природу. Здесь даже антинаучные домыслы легко сходят за истину. И пошли публикации против Адычанской ГЭС одна за другой, усугубляя и без того сложнейшие проблемы с организацией её строительства в этом глухом краю. Одна из статей в областной газете озаглавлена «Использовать энергию океана». Автор смело предлагает альтернативу Адычанской ГЭС в виде приливной ГЭС, не удосужившись узнать, что морских приливов у северо-восточных арктических берегов Азии практически не бывает. Несерьезно все это.

Раз уж мы коснулись ГЭС, то заметим, что здесь необходим свежий взгляд на всю проблему.

В действительности мировые ресурсы гидроэнергетики определяются далеко не только наличием удобных, с точки зрения строителей, перепадов воды на реках, изысканных на суше, а всей массой воды, постоянно низвергающейся с довольно значительной средней высоты из атмосферы. Поняв это, мы узнаем, что потенциальные ресурсы гидроэнергии, как минимум в тысячу раз больше, чем числятся фактически учтенными. Такое уточнение открывает простор для пытливой мысли изобретателей. Учтенные ранее ресурсы гидроэнергетики тоже велики, но используются далеко не полностью, а в нашей стране всего на 20 %. Полное их использование, к тому же с пополнением ресурсов энергии морских приливов, могло бы вытеснить теплоэнергетику в производстве электроэнергии, и мы бы навсегда распрощались с чадящими трубами тепловых электростанций.

Заканчивая рассмотрение потенциальных ресурсов естественных неравновесных энергопроцессов, заметим, что помимо упоминавшихся нами ещё небольшого ряда других (гелиоэнергетика, биоэнергетика, термоэнергетика и т. д.), общее тепловое, а правильнее сказать энергетическое насыщение внешних сфер Земли, создается вероятно целым комплексом разных неравновесных процессов, в том числе ещё незамеченных и неизученных. Можно надеяться, что они обладают энергетическими ресурсами в принципе доступными для утилизации, а по величине абсолютно не сопоставимыми с теми, что оценивались на прошлом опыте использования постоянно возобновляемых источников энергии. Так что эпоха использования возобновляемых источников энергии отнюдь не пройдена, как считают некоторые. Естественные неравновесные процессы ждут еще основательного изучения и практической реализации, вплоть до полного исключения топливной энергетики. Это может произойти так скоро, как скоро люди уверуют в такую возможность, ибо технические решения для её реализации практически кажется опять подготовлены ранее, чем физика успела понять и осознать такую возможность.

Отказываться или затягивать решение проблемы использования возобновляемых источников энергии нельзя, ибо в противостоянии экологии топливной энергетике может случится так, что мы погасим все топки и остановим двигатели. Но возвратившись к дровам мы вмиг спалим все леса и рассуждения об экологии вовсе утратят смысл.

10.4. Строиться, примеряясь к экологии

Мы не перестаем удивляться неразумному строительству египетских пирамид древними. Но посмотрим, далеко ли ушли мы сами от нерациональных способов сооружения нужных нам объектов. В наших стройках, будь то промышленные или гражданские, царствует монолит бетона, кирпича, а в гидростроительстве – грунт. При этом мы практически никогда не считались с естественной природой, часто забываем о ней и сейчас. Монолитные сооружения требуют огромной массы сырья для производства строительных материалов, а его добыча и транспортировка принуждают нас корежить землю великим множеством карьеров, подъездных путей к ним и использования бессчетного числа коптящих и пылящих механизмов. Радуясь каждой новостройке мы закрываем глаза на то, как страдает естественная природа в стороне от нее. Тяжелые строительные материалы обладают увеличенной теплопроводностью и очень часто, особенно на севере, толщину ограждений обогреваемых помещений заведомо увеличивают не ради их прочности, а для того, чтобы они меньше теряли тепла. А тепла они всё равно теряют много, вызывая необходимость увеличивать мощности котельных, а с ними и их вредных выбросов в атмосферу, отчего опять же страдает экология.

Требования охраны природы с запозданием, но верно приближают нас к тому, что при современных методах строительства мы вынуждены будем тратиться дважды, а именно: сначала на само строительство объекта, а затем на ликвидацию урона природе, вызванного за пределами строительной площадки. Становится очевидным, что всякое непродуманное нарушение природы должно завершиться восстановлением былого порядка на ней. Вот здесь особенно нужен строгий контроль местных властей и общественности.

Таким образом, уменьшение массивности строек и потерь тепла ими является столь же необходимой мерой в деле охраны природы, как рекультивация нарушенных ландшафтов, повсеместное введение безотходных производств и сокращение энергетических выбросов в атмосферу, поскольку полезные и вредные результаты деятельности человека здесь тесно взаимосвязаны. Между тем пока скромный опыт цивилизованных обществ показывает, что строительными, к тому же мало теплопроводными, материалами могут являться даже воздух (пневмоопорные или пневмонесущие конструкции) в промышленном и гражданском строительстве и вода (в жестких или мягких оболочках) в гидростроительстве, вовсе исключающие необходимость ведения горных выработок.

Сама охрана природы отнюдь не должна сводиться к сторожевой службе, а наибольшее внимание призвана уделять анализу всей важнейшей деятельности человека и поиску причин, порождающих необходимость нежелательных воздействий на природу, а также способов устранения таких необходимостей. А последнее сводится к поиску новых материалов, вовлекаемых в строительство, новых строительных технологий, способов рациональных конструкций сооружений, их размещения и т. д. Здесь можно ждать много неожиданных и благодатных решений. В развитие этого тезиса я вернусь ко льду.

Лёд, как и снег, вещество или материал, к которому приспособилась вся живая природа нашей страны и его появление зимой и таяние летом не вносит ни малейших изменений в состояние окружающей среды. Идеи о строительном использовании льда также уходят в глубину веков. Вспомним жилища эскимосов (иглу), ледяные окна в якутских юртах, наконец, декоративные ледяные постройки более цивилизованных обществ и тому подобное. Но добыча льда на замерзших водоемах тоже оказалась делом довольно дорогим и сложным и это ограничивало возможность его использования в разного рода строительствах.

Автору с коллегами и помощниками довелось принять участие в разработке принципиально нового и эффективного способа производства больших объемов льда и это предопределило возможность его широкого использования во многих производствах, в том числе и в строительстве (Файко, 1986). Идея способа в какой-то мере исходит от уяснения неравновесного теплообмена замерзающих водоёмов с атмосферой. Стало очевидным, что ускорить намерзание льда во много больше, чем на водоёме, можно лишь в том случае, если вынести теплообмен воды для её замораживания из-подо льда, непосредственно в среду морозного воздуха. Для этого попробовали применить дальнеструйную дождевальную установку и сразу получилось – при температуре воздуха около минус 40 °C лёд генерировался сообразно расходу воды через ствол дождева-теля 75 л/с. Летняя дождевальная установка быстро обмерзала на морозе, поэтому её пришлось «устроить» под общий капот с дизелем. Так появилась многим ныне известная намораживающая машина типа «Град». Сейчас уже несколько модификаций такой машины начинают выпускаться промышленностью, а десятки первых сделанные в полукустарных условиях, работают во многих уголках севера и даже в европейской части СССР. Способ позволяет не только быстро изготавливать любые нужные количества льда, но и одновременно сразу закладывать его в сооружение.

Вследствие этого себестоимость льда снижается до нескольких копеек за кубометр, что во много раз дешевле, чем обходится заложение грунта. К тому же при таком использовании льда не надо разрабатывать карьеров, строить дорог, не надо губить почву и растительность, то есть практически полностью исключается необходимость как-либо ранить окружающую природу. Если что и попадает под сам лёд, то жизнь не погибнет, она сохранится в анабиозе.

Новый способ был нацелен на решение сугубо технических задач и получение экономического эффекта. Он широко стал использоваться на ускоренном сооружении ранних и прочных ледяных переправ через реки и для аэродромов и здесь уже принес десятки миллионов рублей экономического эффекта (Файко, 1988). Но он может иметь и уже начинает получать намного более широкое применение и, на что следует обратить внимание, во всех мыслимых применениях не несет угрозы окружающей среде, а во многих случаях может напрямую использоваться для ликвидации произошедших по вине человека или в силу каких-то естественных причин нарушений окружающей природе. Например, громадные выработки горных полигонов в зоне вечной мерзлоты, на закрытие которых ныне не хватает ни сил, ни материалов, могут просто заполняться искусственно намороженным льдом, а затем уже покрываться слоем породы и почвы, достаточным для исключения последующего летнего таяния льда и для возобновления растительности.

В Якутии, где короткое, но теплое лето позволяет выращивать все основные сельскохозяйственные культуры (зерновые, картофель, помидоры, огурцы, капусту и прочие овощи) вечно не хватает влаги. Из-за дефицита увлажнения усыхают луга и обостряется проблема кормов для крупного рогатого скота. Чтобы как-то улучшить влагообеспеченность сельхозугодий, здесь широко применяют лиманное орошение, улавливая сток снеговых и дождевых вод малыми глухими земляными плотинами, как правило, обреченными на прорыв при переливе или вследствие возникающих на них зимой термических деформаций. Из-за частого сооружения каждый раз новых плотин многие речки вовсе лишились естественно сформированных берегов. И здесь уже без ущерба для природы, сейчас начинают применять временные малые, высотой до 10 метров, ледяные плотины. Их намораживание полностью исключает необходимость земляных работ, а сброс воды по мере влагозарядки почв, происходит автоматически под действием нагревающейся воды и атмосферы, расплавляющих лёд.


Рис. 19. Намораживание большой ледяной плотины из техногенного льда на р. Амга в Якутии, объёмом 440 тыс. м 3 (фото автора).


В перспективе просматривается возможность сооружения больших стационарных ледяных плотин, в том числе при гидроэлектростанциях. Мы уже научились их делать (рис. 19). Остается решить возможность термоизоляции и надежности и тогда ГЭС на вечной мерзлоте «подешевеют» раз в десять и во столько же меньше будет нарушаться природная среда вокруг их строительства.

В этой книге не технического толка, мы не можем углубляться в описание всех возможностей и нюансов использования новой технологии, производства и применения льда, равно как и иных безвредных для окружающей среды строительных материалов. Нам важно отметить, что такие материалы могут быть и даже есть и надо хорошо осознать, что они несут не только лишь экономические выгоды человеку, сколько пользу делу охраны окружающей среды, чтобы соответственно увеличить внимание изысканию путей и способов их внедрения.

Вот так в общих чертах, мною просматривается решение ряда задач по удовлетворению благ человека и сохранению необходимой экологической обстановки, окружающей его.

Глава 11. Человек будет управлять климатом!

… невозможное сегодня станет возможным завтра.

К. Э. Циолковский

Человек могуч своей способностью добывать знания в бездне неизведанного и дерзновенно вмешиваться в налаживание там порядка по своему разумению. И невесть как далеко бы он ушел с этой способностью, если бы на тернистом пути к истине ему не мешали разные помехи в реализации мысли, а именно: неверно поставленная цель, незамеченное заблуждение или догма, притупивший внимание азарт или обезоруживающий волю пессимизм.

Вот такое обобщающее размышление пришло в голову, когда перечитав все вышеизложенное, я решил закончить эту книгу оптимистической главой о будущем очеловеченной Земли. Залогом оптимизма является неодолимая сила человеческого разума, которому нужна только воля. Вот ей мы и воспользуемся, пустившись в размышления о будущем нашей планеты и человека на ней.

11.1. Ключи от климата уже есть?

Всего каких-то четверть века назад цивилизованному человечеству северного полушария климат казался далеко неуютным из-за недостатка тепла. Это сейчас мы забоялись перегрева, а тогда об этом еще не думали. Тогда один за другим родилось много проектов и прожектов по отеплению климата северного полушария (Адабашев, 1964). Наибольшую известность во всем мире тогда получил проект П. М. Борисова по созданию прямотоков теплых атлантических вод через Северный Ледовитый океан в акваторию Тихого океана (Борисов, 1970). Осуществимость проекта уже тогда не вызывала особых сомнений, ибо сводилась к постройке мощной перекачивающей станции в Беринговом проливе, имеющим ширину 74 км и среднюю глубину 50 метров и энергетического узла для её питания, которым называлась в основном Нижне-Ленская ГЭС, мощностью в 20 млн. кВт. Через станцию должно было перекачиваться 140 тыс. км 3 воды в год. Общая стоимость проекта тогда оценивалась в 24 млрд. рублей. Как видно, все это, особенно при участии нескольких заинтересованных государств, в том числе США и Канады, не выходило за рамки реально доступного для практического осуществления. Были подработаны вопросы конструкции перекачивающих агрегатов, способы их изготовления, монтажа, условия работы, пропуска льда и так далее. Словом, это был не просто прожект, а именно предварительный проект. С Петром Михайловичем мне удалось лично познакомиться в пору его активной работы над проектом. Это был, несмотря на некоторую болезненную тучность, человек, очень энергичный, целеустремленный, беззаветно и бескорыстно отдавший себя грандиозной идее. Будучи по специальности инженером гидроэнергетиком и уже вчерне разработав свой проект, он сам увидел главную возможную препону на пути его осуществления – ему, как и многим специалистам географам, оставалось неясным, как отзовется Земля на осуществление такого проекта. Поэтому, отложив на несколько лет вопросы инженерного решения проблемы, он перешел на работу в институт географии АН СССР, где основательно занялся изучением климатов прошлого, положительных и возможных отрицательных последствий, которые отзовутся на природе в результате осуществления его проекта, заодно доказав свою компетентность в географии, защитой степени кандидата географических наук,

На страницу:
21 из 23