Дерзкие мысли о климате - читать онлайн бесплатно, автор Лев Иванович Файко, ЛитПортал
bannerbanner
На страницу:
15 из 23
Настройки чтения
Размер шрифта
Высота строк
Поля

Вероятно, такие же рассуждения привели профессора В. Н. Степанова к желанию составить баланс тепла в океанах, по материалам наблюдений многих, преимущественно советских, океанографических экспедиций (табл. 4).

Из этого баланса следует, что в наше время необратимо отдаёт тепло в атмосферу лишь Атлантический океан. Причём подавляющая доля его потерь относится на акваторию Северного Ледовитого океана, а остальное на теплообмен через поверхность океана. Это не противоречит сделанному нами выше заключению, что большая часть Северного Ледовитого океана, а именно, вечно замерзший и замерзающий Арктический бассейн, тепла в атмосферу в течение года необратимо вообще не отдает. Здесь зимние потери, выражающиеся лишь в высвобождении теплоты кристаллизации, летом полностью восстанавливаются теплотой плавления. Значит, потери тепла атлантических вод происходят на незамерзающих морях Северного Ледовитого океана, а именно: Норвежском, Баренцевом и отчасти Гренландском. В Атлантике теряется некоторая часть тепла, поступающая и из других океанов.

Зная величину общей необратимой потери тепла Атлантическим океаном (6,06×1018 кДж за год) и его объём, можно грубо определить, что в наше время этот океан должен остывать на 10 °С за 240 лет и остыть до способности к оледенению в высоких широтах за 1,5 ÷ 3 тыс. лет. Поскольку же он представляет всего 1/4 часть объема Мирового океана, то при водообмене с другими океанами получает тепло и от них. Следовательно, его охлаждение может вызвать в 4 раза уменьшенное охлаждение объема всего Мирового океана. В таком случае обратим внимание на тот, следующий из табл. 4, факт, что в целом Мировой океан в наше время нагревается на 9,1 × 1018 кДж за год. А это уже может свидетельствовать о том, что несмотря на несбалансированные потери тепла Атлантическим океаном, весь объём Мирового океана нагревается (1 370 млн. км3) с интенсивностью до 1 °C за 625 лет.

В связи с этой оценкой, интересно заметить, что такая интенсивность нагревания согласуется с наблюдаемым ныне подъёмом уровня Мирового океана, примерно на 1,5 мм за год, что может объясняться уменьшением плотности нагревающейся воды, хотя чаще причиной этого подъёма называется таяние ледников суши, изостазия (уравновешивание земной коры), накопление донных осадков и. т. д.

Величины, показанные в табл. 4, а тем более наши тепловые расчеты по ним, разумеется могут ещё нести в себе какие-то даже существенные ошибки. Однако очень важно, что сам метод комплексного расчета натурных наблюдений теплообмена вод, океаносферы, решительное освобождение его от традиционной привязанности к обязательной сходимости балансовых величин, наконец, возможность его использования для оценок тепловых эволюций Мирового океана закладывают хорошую основу для разработки метода сверхдолгосрочного прогнозирования ожидаемых тепловых изменений океаносферы, а через них и климатических трансформаций на всей Земле. Я верю, что такой метод прогнозирования в конце концов займет достойное место в климатологии и станет лучшим памятником талантливому советскому океанологу Виталию Николаевичу Степанову.


Таблица 4. Баланс тепла в океанах (по В.Н. Степанову)


Но чтобы обещающий метод пробил себе дорогу к делу, надо, во-первых, обратить на него должное внимание науки, во-вторых, еще и еще раз проверить, и проконтролировать всякими возможными способами и методами. Мы попробуем подступиться к этому с тем, что узнали выше: с оценками теплообмена океаносферы с атмосферой, которые позволили нам узнать о больших контрастах в теплообеспеченности разных стран и с оценками теплообменной роли термохалинной конвекции в Мировом океане. Заново примерно оценивая вероятность охлаждения океаносферы, прибегнем снова к самым общим оценкам ее теплообмена с атмосферой и космическим пространством в наше время.

Для начала допустимо заключить, что терять теплоту может только та среда или масса, у которой есть что терять. Об этом почему-то не задумываются те исследователи, которые без всяких убедительных доказательств «грешат» на Арктику и Антарктику, как якобы на самых расточительных «транжиров» общеземного тепла. Но тут же все ясно: там, где полярные водоемы замерзают или где суша постоянно покрыта льдом, не может происходить сколько-нибудь ощутимых, для общего теплообмена Земли с космическим пространством, потерь тепла. За счет увеличенного альбедо ледяных поверхностей здесь лишь не усваивается некоторая, может и значительная, доля солнечной радиации, что вовсе не отражается на теплообеспеченности остальной поверхности Земли. Разве можно ожидать от оледеневших стран какой-то передачи тепла более теплым странам? Но раз в околополюсных пространствах не происходит ни потерь, ни усвоения тепла в количествах, способных повлиять на термику всей Земли, то оставим их до поры в покое.

Совсем в ином положении оказываются теплые акватории Мирового океана. У них в достатке есть и что терять и как терять. Попробуем оценить как эти потери согласуются с приходом тепла от Солнца и расходом его в космическое пространство. Начнем опять с экватора и примыкающих к нему акваторий, ограниченных 10° северной и южной широт. Не стану утомлять читателя подробностями цифровых выкладок и расчетами, к тому же не очень надежными, но скажу лишь, что здесь поверхность океана усваивает тепла больше, чем возвращает его в атмосферу и в космос. Хотя теряет в общем много: из 480 кДж/см2, поступивших от Солнца за год, теряется 400 кДж/см2, остальное усваивается океаном и уносится течениями в высокие широты. Такие потери тепла бесконечно велики, против тех, что можно насчитать или вообразить потерянными в околополюсном пространстве. Но из того, что они не балансируются здесь с приходом радиационного тепла следует, что на акватории Мирового океана обязательно существует где-то область, у которой расход тепла в атмосферу и в космос обязательно превышает местный приход тепла от Солнца. Из вышепоказанной табл. 4 и наших рассуждений следует, что такие области расположены в Атлантическом океане, а наиболее вероятно – на незамерзающих морях Северного Ледовитого океана.

Ю. П. Доронин (1969), рассчитывая ожидаемые потери тепла с открытой воды Арктики, по климатическим данным определил их возможную среднюю величину, равной более 1 100 кДж/см 2 за год. Известны данные и о более значительных потерях тепла с открытой воды Норвежского и Баренцева морей. Разброс определений здесь велик, но в среднем можно принять, что с незамерзающих акваторий этих морей, имеющих площадь около 2,5 млн. км2, относительный расход тепла составляет 200÷250 кДж/см 2 за год, а абсолютный 5 ÷ 6,2 × 1018 кДж за год. Обращаясь к табл. 4 можно заметить, что эта величина сходится с разницей между абсолютными расходом и приходом тепла через поверхность Северного Ледовитого океана. А это значит, что на его незамерзающих морях (и только здесь!) океан теряет тепла как в атмосферу, так и в космос, по крайней мере в 10 раз больше, чем получает его здесь же от Солнца. Надо думать, что абсолютная потеря тепла здесь является величиной не постоянной и существенно зависит от температуры поступающей воды и площади распространения льдов, в то время как температура воздуха скорее всего зависит от этих же изменений.

Как видно, единый инертный и хорошо перемешиваемый гравитационным массо- и теплообменом Мировой океан оказывается нуждается и в том, чтобы его отдельные акватории пользовались особо пристальным вниманием исследователей хотя бы потому, что они могут быть очагами зарождений климатических трансформаций.

7.7. Навет на Антарктиду

Субъективное восприятие терминов «тепло» и «холод», пожалуй, нигде так не мешает поискам истины, как в физической географии. Познав, как «холодно» на Антарктиде, люди скоро и охотно согласились с мыслью, что этот материк не только жуткий «морозильник», но и самый злостный «растратчик» общеземного тепла. Но верно ли это?

Посмотрим, имеет ли ледяная поверхность Антарктиды то, что она якобы «растрачивает»? Сплошь оледеневшая Антарктида под стать Луне значительно оторвана от общего теплообмена совершающегося на Земле и в этом состоянии вынуждена обходиться в основном собственными очень скудными тепловыми ресурсами, которыми наделила её природа. К тому же весь теплообмен через твердую поверхность ледникового купола замыкается на кондуктивной теплопроводности льда, сильно сдерживающий как усвоение, так и высвобождение равных и с равной интенсивностью оборачивающихся небольших количеств тепла.

Можно как угодно измерять и рассчитывать величины оборота тепла через поверхность нетающего (сухого) льда, и мы не «наскребем» более 40 кДж в год, которые может отдать зимой и усвоить летом 1 см 2 площади антарктического ледника, покрывшего весь этот материк площадью в 14 млн. км2.

В Антарктиде при очень прозрачной атмосфере и некотором преимущественном положении этого материка по отношению к Солнцу в летний период приход коротковолновой солнечной радиации составляет значительную величину, достигающую около 500 кДж/см 2 год. Но из-за большого альбедо (свыше 0,9) усваивается только показанная малая величина. Между тем средние удельные потери со всей площади Земли составляют 300 кДж/см 2 год. Следовательно, ледяная поверхность Антарктиды отнюдь не держит первенства ни к приходу, ни по «растрате» тепла.

Сколько теряется тепла над Антарктидой через атмосферу можно судить по количеству конденсирующихся здесь осадков.

В центре материка их величина составляет не более 5 г/см 2 за год, а на восточной его части – до 60 г/см 2 за год. Общее количество накапливающегося снега на всей площади Антарктиды эквивалентно объёму воды в 2 000 км 3 за год. А это значит, что удельная величина осадков на всем материке составляет около 14,3 г/см 2 за год. При конденсации и сублимации такого количества осадков высвобождается и тут же уходит в космос тоже около 40 кДж/см 2 за год. В удельном выражении это в 10 раз меньше, чем теряется над незамерзающими морями Северного Ледовитого океана. А сравнивая площади, с которых теряются эти количества тепла, можно определить, что абсолютные потери тепла над Антарктидой сказываются меньше, чем над приэкваториальными областями примерно в 60 раз и в какой-то мере сопоставимыми с теми, что теряется зимой над незамерзающими полярными морями северного полушария. В атмосфере над Антарктидой тепла от конденсации пара едва хватает, чтобы исключить лунного предела охлаждения её поверхности (минус 120 °C), а конденсация пара вкупе с западным переносном атмосферы над приатлантическими водами Северного Ледовитого океана оберегает от возможного более значительного охлаждения обширную площадь северных территорий Евразийского материка. Антарктида и незамерзающие моря Арктики оказываются примерно равнозначными «растратчиками» общеземного тепла, но побочные эффекты этих «растрат» в нашем субъективном представлении ассоциируются по-разному: Антарктиду мы называем жутким «морозильником», а теплые воды Гольфстрима, которые по сути дела теряют в Арктике общеземное тепло, мы называем благом. Но это благо оборачивается утратой тепла от всего Мирового океана, а значит, и от Земли. Мнение об охлаждающем влиянии Антарктиды въедливо и поэтому нередко ссылаются на то, что отсюда по океану расползаются айсберги, объемом ни много ни мало в 2 000 км3. Верно, что каждый кубический сантиметр льда отнимает от воды при таянии 334 Дж тепла, а весь объём айсбергов забирает уже 0,7 × 1018 кДж за год. Когда же сравним эту потерю тепла с общей потерей его Мировым океаном, то оказывается, что она составляет всего 0,04 %. К тому же льда Северного Ледовитого океана выносится примерно в полтора раза больше, чем из Антарктиды.

Как видно, с какой стороны ни взгляни, Антарктида и в самом деле оказывается без вины виноватой. Но посмотрим на сравнения вовсе уж с неожиданной стороны и получим ещё более неожиданный результат. Всякие теплофизические оценки становятся более строгими и точными, когда отсчет количеств тепла ведется от абсолютного нуля (минус 273 °C). Для Земли подобный отсчет не является абстракцией, поскольку она возвращает тепло, полученное от Солнца, в космос, где температура, близка абсолютному нулю.

Оценим над какой из площадок суши в 1 см 2 содержится больше тепла: над африканской пустыней в воздухе со средней температурой около плюс 20 °C или над Антарктидой со слоем льда высотой около 1800 м, но с температурой минус 30 °C. Перемножаем последовательно удельную теплоёмкость (кал/г× °C) воздуха, количество градусов от абсолютного нуля и массу (г) сначала воздушного столба, затем ледяного:



Оказывается, что в атмосфере над Африкой тепла содержится примерно в 300 раз меньше, чем в массе льда над Антарктидой! Вот вам и цена наших ощущений. Способность льда хранить тепло во много раз больше, чем хранит масса воздуха или любого иного газа, если можно так выразиться, создает своеобразный «ледниковый» тепловой эффект земной коры. Подобные расчеты могут составить основу завлекательных задач, укрепить наши знания об истинном тепловом состоянии Земли как планеты, но все же не только указанные тепловые контрасты освобождают полярные области от огульных обвинений в охлаждении Земли, а об этом же, и главным образом, свидетельствуют особенности тепловой жизни атмосферы, как единственного переносчика тепла между огромными площадями полярного льда и прочими поверхностями нашей планеты. Этому и посвящена следующая глава.

Глава 8. Как атмосфера управляет климатом и погодой

Разве обоснованными взглядами следует считать только те, которые получили наиболее широкое признание?

Ж. Б. Ламарк

Очевидно, что общее и региональное тепловое состояние земной поверхности зависит от того, насколько за тот или иной период времени приход тепла солнечной радиации различается от его расхода в космическое пространство. Важная роль в регулировании такого теплообмена принадлежит атмосфере, как активному посреднику теплообмена земной поверхности, в частности океаносферы, с космическим пространством. И как раз особенности взаимодействия океана и атмосферы, где кроются и важнейшие причины колебаний климата, изучены еще очень слабо. Предложено множество сложнейших математических моделей этого взаимодействия, но едва ли не все они страдают теоретическими натяжками и слабой согласованностью с реально происходящими физическими явлениями. А неувязки в основе своей идут от недостаточной осмысленности многих процессов, от слабоизученных или вовсе не изученных их особенностей и из-за недостатка простых методов получения наиболее важных количественных характеристик теплообмена в атмосфере.

А не запутались ли мы в представлениях о теплообмене через атмосферу в неразберихе исходных положений физики атмосферы?

8.1. Что же такое – парниковый эффект?

Давно заметил, что ученые не очень доверяют определениям и объяснениям каких-либо физических явлений, если эти объяснения даны в общедоступных справочниках, хотя бы и в Большой Советской Энциклопедии (БСЭ). При этом все знают, что статьи для БСЭ пишут самые авторитетные ученые в той области, к которой относится определение и его объяснение. Таким образом, как бы учеными же признается, что есть наука для всех и наука только для ученых.

Волею судьбы и личных интересов я отношусь к ученым, но решительно стою за науку для всех, ибо «наука для ученых» это не плохой повод для сокрытия правды об истинности научных знаний ото всех. Мы привыкли к мысли, что ученые сами во всем разберутся и не допускаем того, вполне возможного случая, что они сами же могут и запутаться. Нечто подобное я нашел в толковании термина «парниковый эффект». Пробовал обратиться со своими сомнениями к крупным ученым. Вместо объяснений мне отвечали ссылками на авторитеты – вот конек большинства современных ученых, конек, который тащит не иначе как в покои догматизма.

Давайте процитируем как есть статью из 19 тома третьего издания БСЭ (1975):

«ПАРНИКОВЫЙ ЭФФЕКТ (оранжерейный эффект) атмосферы, свойство атмосферы пропускать солнечную радиацию, но задерживать земное излучение и тем самым способствовать аккумуляции тепла Землей. Земная атмосфера сравнительно хорошо пропускает коротковолновую солнечную радиацию, которая почти полностью поглощается земной поверхностью, так как альбедо земной поверхности в общем мало. Нагреваясь за счет поглощения солнечной радиации, земная поверхность становится источником земного, в основном длинноволнового излучения, прозрачность атмосферы для которого мала и которое почти полностью поглощается в атмосфере. Благодаря П. Э. при ясном небе только 10–20 % земного излучения может, проникая сквозь атмосферу, уходить в космическое пространство.

Лит: Кондратьев К. Н. Лучистый теплообмен в атмосфере. Л., 1956»

Вот как! Оказывается, наша Земля, обмениваясь теплом только путем радиации с космическим пространством, 80…90 % тепла, полученного от Солнца безвозвратно присваивает себе. И как же мы не сгорели при таком теплообмене? Это, конечно, ошибка, а проще – ляпсус!

Но давайте заглянем, что пишет в более поздней работе «Эволюция биосферы» (1984) М. И. Будыко: «В среднем для всей поверхности Земли эффективное излучение значительно меньше поглощенной коротковолновой радиации. Такая закономерность является следствием так называемого парникового эффекта, то есть результатом относительно большей прозрачности атмосферы для коротковолновой радиации по сравнению с прозрачностью для длинноволнового излучения. Поэтому средний радиационный баланс поверхности Земли является положительной величиной (с. 32–33). Слова другие, а смысл тот же. Его ошибочность легко вскрывается, если вспомнить, что получая тепло от радиации Солнца, Земля столько же излучает его в космос. Если бы возникло неравенство лучистых потоков тепла, как это трактуется в определениях парникового эффекта, то Земля действительно стала бы аккумулировать его и неизбежно опасно перегреваться.

Можно цитировать еще сотню-другую ученых и все останется также запутанным и несуразным. Отметив нелогичность таких рассуждений, поищем корни, на которых они выросли. Тогда сразу возникает вопрос, а причем же в этом термине пар, если парниковый эффект якобы целиком определяется характером лучеиспускания Земли. Не станем разбираться, как это случилось, но отметим, что физически более точно направленный смысл русского названия этого явления, как «парникового», оказался ныне полностью выхолощенным и подмененным спорным толкованием. Само название его чаще стало редуцироваться в термин «оранжерейный эффект» от французского названия помещения для выращивания апельсинов, где русское слово «пар» уже потерялось вместе с его смыслом. Чем дальше зайдут подобного рода терминологические трансформации, тем сложнее будет отыскать концы, ведущие к правильному пониманию сути явления.

В парнике, покрытом стеклом или прозрачной пленкой, бывает значительно теплее, чем на открытом воздухе, отнюдь не только потому, что стекло задерживает обратное излучение, а потому, что поднимающийся от земли и растений пар не улетучивается в атмосферу, а конденсируется здесь же, высвобождая теплоту конденсации в самом парнике. То же происходит и в атмосфере, с тем отличием, что там высвободившаяся теплота конденсации удаляется излучением в космос.

Сам же М. И. Будыко, целиком разделяющий современное толкование физической сути парникового эффекта и по-своему «уточнивший» его, пишет, что «… на океанах около 90 % тепла радиационного баланса расходуется на испарение и только 10 % на непосредственное турбулентное нагревание атмосферы… Для всей Земли расход тепла на испарение составляет 83 % радиационного баланса и на турбулентный теплообмен – 17 %» (там же).

Так чем же всё-таки подогревается атмосфера – паром или задержанными ею лучами? Если тем и другим, то это будет двойное подогревание, что трудно представить: если паром, то причем тут задержание лучей; если задержание лучей, как определиться с паром и так далее. Школьнику за такую сумятицу в мыслях и не понимание сути явлений поставят двойку, а ученому это сходит.

На самом деле, вводя представление о преобладании неравновесного лучистого теплообмена в атмосфере, мы невольно допускаем раздвоение (дуализм), то есть наложенный и не нужный, лишний и способный внести лишь путаницу, повторный учет одних и тех же количеств превращающейся тепловой энергии. Надо разобраться, что здесь правильно и отбросить то, что мешает сложить четкое представление об этом явлении, Поняв необходимость такого шага, я осмелюсь предположить, что задержку обратного излучения земной поверхности просто изменением длины лучей, что сейчас называется непосредственной причиной парникового эффекта, объяснить вряд ли можно. И вот почему.

Как сообщает М. И. Будыко (там же) расход тепла на испарение для всей Земли составляет 83 % от поступающего и усваиваемого земной поверхностью радиационного тепла. Этот известный показатель не вызывает сомнений. Между тем в наиболее широко распространенных пояснениях термина обычно сообщается, что «… Благодаря парниковому эффекту при ясном небе только 10…20 % земного излучения может проникать сквозь атмосферу и уходить в космическое пространство (Щукин, 1980).

Но посмотрим, что же происходит с той большой долей энергии, которая тратится на испарение. Очевидно, что превратившись в энергию парообразования на земной поверхности, она в скрытой форме поднялась вместе с паром в холодные высоты атмосферы. Здесь пар конденсируется и высвобождает теплоту конденсации, то есть ту же, но дважды превращенную испарением и конденсацией пара, солнечную энергию. Ведь энергия не исчезает! Таким образом, упомянутые 83 % бывшей лучевой энергии оказываются в высотах атмосферы. Известны многочисленные и тоже не всегда ясные и логичные рассуждения о том, куда далее расходуется эта превращенная энергия. Кажется, чаще всего об её существовании просто забывают, но в других случаях говорят о том, что она нагревает атмосферу и опять же земную поверхность. Как в этом убедиться достоверно кажется никто не знает. Полагая, что в науке легких путей не бывает, здесь ищут сложные методы наблюдений, выводят громоздкие формулы, мобилизуют электронно-вычислительную технику. Но ясности не прибавляется. Я не залез так глубоко в эту проблему и вижу ее решение более простым и кажется логичным: вряд ли есть более подходящий случай удалиться этой энергии в окружающий космос опять же путем лучеиспускания. Этому в верхних слоях атмосферы способствует близость космоса, меньшее оптическое сопротивление с его стороны и, наоборот, не способствуют трудности обратного пути к земной поверхности. При этом некоторое нагревание верхней атмосферы этой энергией отнюдь не исключается.

Теперь уже не сложно понять от чего прижилась неувязка (разбаланс) в приходе – расходе лучистой энергии к Земле и от нее в процитированных выше определениях парникового эффекта. Это произошло от того, что был забыт пар, а вместе с этим упущена из внимания его способность переносить с собою огромную долю энергии, поступающей к земной поверхности. Но парообразование является наиболее значимой для Земли формой энергетического превращения лучистой энергии. Превращенная изотермическим парообразованием энергия луча перестает быть лучистой, пока снова не высвободится при конденсации в высотах атмосферы. Вероятно, поэтому ученые не решались напрямую утверждать, что вся усвоенная земной поверхностью солнечная радиация, радиацией же и излучается в космос. Этому же мешала и усмотренная наукой невозможность излучения всей получаемой энергии через атмосферу из-за неизбежной трансформации коротковолновой радиации в длинноволновую. Так в объяснениях осталась лазейка для ложных представлений об аккумуляции тепла атмосферой и земной поверхностью. Между тем, отказавшись от представления об аккумуляции тепла внешними земными сферами, я готов утверждать, что атмосфера способна задерживать часть поступающей солнечной энергии, что не приводит к нарушению общего баланса внешнего теплообмена Земли, но уверенно объясняет причину повышенной, против ожидаемой, температуры атмосферы и земной поверхности. Здесь опять надо вспомнить о причинах неравновесного теплообмена замерзающих водоёмов с внешней средой.

И в атмосфере стойкое поддержание дополнительного нагрева обязано тому, что здесь, как и на замерзающем водоёме, происходит обратимый, но неравнозначный по форме и по интенсивности теплообмен: лучи коротковолновой радиации, достигая земной поверхности со скоростью света, большей долей превращаются в теплоту парообразования, которая уже несравненно медленнее возвращается сквозь атмосферу с паром путем конвекции. Эта постоянная задержка обратного потока скрытой теплоты парообразования на пути к конденсации и излучению в космическое пространство и обусловливает поддержание более высокой, чем должно было бы быть, температуры и энтальпии атмосферы. Тут полезно вспомнить и о работе внешней силы земного тяготения, выталкивающей пар, без чего невозможно представить конвекцию. А вот простой задержкой обратного излучения нагрев атмосферы объяснить трудно. Как бы мы не перебирали способности лучей с разной длиной волны, мы вынуждены признать, что все они распространяются со скоростью света и вовсе не подчиняются (в рамках классической физики) влиянию силы тяготения.

На страницу:
15 из 23