Дерзкие мысли о климате - читать онлайн бесплатно, автор Лев Иванович Файко, ЛитПортал
bannerbanner
На страницу:
14 из 23
Настройки чтения
Размер шрифта
Высота строк
Поля

Здесь кое-что прояснили исследования зарубежных ученых, произведенные в пятидесятых-шестидесятых годах нашего века. Г. Стоммел предположил, что второй, если не главной причиной зарождения циркуляции вод между Атлантикой и Северным Ледовитым океаном, может являться гравитационное опускание полярных вод в результате увеличения их солености, что можно доказать существованием глубинного противотечения Гольфстрима. В 1967 г. Д. Свал-лоу и Л. Уортингмон прямыми определениями с помощью звуковых буёв, спущенных с корабля на глубины I 500…3 000 м, установили, что такое противотечение существует.

Открытие глубинного противотечения вряд ли можно считать неожиданным, поскольку оно с неизбежностью следует из закона сохранения массы. Не может же притекающая вода накапливаться в открытом водоёме, а поскольку она в том же объёме вытекает, то измерив расход в более доступных мелководных проливах можно приближенно определить и наличие, и величину глубоководного стока воды из Арктического бассейна. Но вот предположение о том, что побудительной причиной оттока глубоководных масс является увеличение солености глубинных вод Арктического бассейна, заслуживает внимания. Здесь уже может открыться завеса над таинственностью главной силы, движущей воды между Северным Ледовитым океаном и Атлантикой.

Действительно соли могут вызывать конвекцию морских вод за счет увеличения их плотности, за чем следует и погружение их на глубину. Такая конвекция называется термохалинной.

В полярном водоёме она может усиливаться низкой температурой рассолов и дополнительным увеличением плотности воды, в которой они появляются. Вообще же в механизме изменения солености периодически замерзающей морской воды и его следствий в термике моря сохраняется некоторые неясности.

Исследуя теплообмен через морской лёд и влияние солей на процесс его намерзания и таяния, мне удалось по-новому, в известной мере независимо, взглянуть на природу возбуждения термохалинной конвекции, чем и хочу поделиться ниже.

Обратимся к необходимому здесь анализу. Нам уже известно, что при замерзании морской лёд существенно, а многолетний почти полностью, рассоляется. Концентрированные и охлажденные до температуры вмещающего их льда рассолы сначала скапливаются в замкнутых ячейках, сквозных капиллярах и межкристаллических прослойках, откуда уже постепенно под воздействием тяготения мигрируют вниз. Чаще всего миграция происходит через каналы стока рассолов, представляющие собой цилиндрические вертикальные полости «стволы» во льду диаметром до 7 мм, открытые снизу. Таких каналов иногда насчитывается до 50 на 1 м 2 нижней поверхности льда.

Эти каналы в толще льда имеют древообразные «Ветви», по которым в них периодически стекает рассол из разрозненных ячеек. Вероятно, за счет усиленного намерзания льда под действием более холодных стекающих рассолов, нижние части каналов сужаются, образуя шейки с диаметром меньшим, чем диаметр канала в 3…5 раз. Благодаря шейкам рассол вытекает не постоянно, а порциями, чередующимися заполнением полостей каналов подлёдной морской водой (рис. 15).


Рис. 15. Схема горизонтального разреза вертикального канала и его лучей, по которым происходит наклонная миграция рассола по льду (по В. Л. Цурикову, 1976)


Не стану утомлять читателя объяснениями почему и как образуются и мигрируют солевые ячейки во льду, почему их миграция, вопреки действию силы притяжения, отклоняется к названным каналам, и так далее, поскольку это в общих чертах известно и можно узнать из книги В. Л. Цурикова «Жидкая фаза в морских льдах» (1976). Отметим лишь, что холодный и высоко концентрированный рассол в конце концов выпадает изо льда в виде капель, устремляющихся ко дну. Подо льдом происходит своего рода соленый капельный «дождь», наблюдать который видимо ещё никому не удавалось. Интенсивность этого «дождя» под многолетним ледяным покровом мало изменяется по сезонам года.

Теперь рассмотрим, что последует вместе с падением сильно соленой отдельной капли через среду менее соленой подповерхностной морской воды. Очевидно, что капля согреется и утратит первоначальную концентрацию солей, но при этом насколько-то охладит и увеличит соленость воды, через которую падает сама. Этот тепло- и солевой обмен приведет к увеличению плотности воды, с которой контактирует капля, а, следовательно, и к вовлечению ее к падению ко дну. Насколько значительным будет такое вовлечение можно установить элементарным расчетом изменения температуры и солености окружающей каплю воды. При этом мы не будем стремиться к большой точности расчетов, поскольку пока достаточно получить лишь примерные характеристики теплообмена.

Сложно установить среднюю температуру, с которой капля выпадает изо льда, поскольку последняя определяется многими изменчивыми характеристиками температуры самого льда, уровня слоя, из которого вытекает капля, температурой замерзания рассола, временем, в течение которого совершается его вытекание, и еще целым рядом трудно учитываемых факторов. Наконец, если мы и определим значение этой температуры, то не менее сложно определить объём воды, который может быть вовлечен холодной каплей к опусканию на дно.

В этом смысле, расчет изменений солености, как причины, возбуждающей термохалинную конвекцию, представляется более доступным и интересным. Такой расчет может основываться на вполне очевидных среднестатистических показателях различий солености взаимодействующих масс.

Примем в расчет вполне реальные для Арктического бассейна следующие показатели солености (промилле):

– воды, из которой намерзает лёд – 33

– наибольшая для глубинных вод – 35

– средняя для плавучего льда – 5

Из приведенного сопоставления следует, что при замерзании поверхностных вод каждый объём образующегося льда, капля за каплей, рассоляется в среднем на 28‰. Выпадающие при этом рассолы, как бы это не происходило, способны увеличить соленость с 33‰ до 35‰, то есть всего на 2‰ уже 14 таких же как лёд, объёмов (точнее массы) окружающей воды, вызывая у неё необходимость спускаться ко дну. Насколько велик общий объем такого вовлечения воды в конвекцию увидим далее.

Изменение плотности морской воды в большей мере зависит от изменений солености, чем от изменений температуры. Известно, например, что повышение солености воды на 1‰ увеличивает ее плотность на 0,0008, а понижение температуры на 1 °C увеличивает плотность холодной воды уже примерно в 13 раз меньше. Если температура вытекающих изо льда капель рассола составляет около минус 4 °C (что вполне вероятно), то разница их температур с окружающей водой составляет примерно 2,2 °C. Следовательно, с очень грубым приближением можно принять, что за счет лишь охлаждения капель в термохалинную конвекцию вовлекается всего около 10 % количества воды, а остальная участвует в термохалинной конвекции за счет увеличенной солености капель. Из этого следует, что при ежегодном намерзании или термомеханическом льдообразовании и таянии всего объёма льда в Северном Ледовитом океане (9250 км 3 или 85×1011 т), опустится на дно, уплотнившись рассолами, выпавшими изо льда в виде капель (119140 км3) воды. Еще около 10 % этой величины (11900 км3) вовлечется в глубину за счет охлаждения капель рассола. Следовательно, всего в термохалинную подледную конвекцию на всей акватории Арктического бассейна вовлекается, опускаясь на дно, около 131000 км 3 морской воды. Кроме этого, значительная доля (определить которую затруднительно) крепко соленой атлантической воды опускается на дно лишь от охлаждения, ещё не достигнув кромки льда. Еще больше опускается под фронтом кромки льда, где разность соленостей между поверхностной и глубинными водами оказывается ещё незначительной из-за чего в термохалинную конвекцию вовлекается масса воды. Здесь при разности соленостей воды в 1‰ в термохалинную подледную конвекцию вовлекается масса воды, превышающая массу льда уже в 29 раз. Ориентируясь на встречающиеся данные определений температуры и солености, можно предположить, что у кромки льдов в термохалинную конвекцию вовлекается не менее 25 % всей поступающей из Атлантики воды, то есть около 30000 км3. Таким образом, всего в термохалинную конвекцию в Северном Ледовитом океане вовлекается более 150000 км 3 воды. Это соответствует ежегодному пополнению слоя плотных соленых вод в глубоководной части Арктического бассейна примерно на 22 м.

Условия формирования и положение массы плотных вод в Северном Ледовитом океане характеризуется схемой (рис. 16), заимствованной из работы А. Ф. Трешникова и Г. И. Баранова «Структура циркуляции вод Арктического бассейна» (1972).

Рассматривая рис. 16 слева направо, можно заметить, что поступающие из Атлантики крепко соленые, но еще относительно теплые воды, по мере остывания, не участвуя в льдообразовании, сразу погружаются в глубину. Далее четко обнаруживается «язык» ниспадающих на глубину вод, усиленно осолоняющихся за счет малой разности соленостей. Вероятно, здесь же осолонение усиливается рассолами изо льда, выносимого из Арктического бассейна, и более интенсивно прогревающимися и рассоляющимися.


Рис. 16. Распределение солёности воды в Арктическом бассейне на разрезе от моря Бофорта (справа) через Северный Полюс до Гренландского моря.


За подводным хребтом Ломоносова уже вся океаническая впадина заполнена тяжелыми солеными водами, определенно перетекающими через хребет обратно в сторону Атлантики. А вот поднятие порога Берингового пролива исключает вытекание тяжелых соленых вод в сторону Тихого океана, и приток теплых вод из него (30 × холодных вод в Атлантический океан.

Произведя вышеизложенный анализ и подсчеты, мы и получили возможность дополнить существующие объяснения причины притока теплых вод из Атлантики и Тихого океана в Северный Ледовитый океан. Заметим существенную деталь: отток вод, компенсирующий приток тихоокеанской воды, никак не мог объясняться ветровым нагоном поверхностных вод из Атлантики, а сейчас он стал объясним соответственно увеличенным противотоком придонных вод в тот же Атлантический океан.

Таким образом, находится, кроме уже известных маломощных сил (разностей температуры воды и ветра), способных возбуждать приток вод из Атлантики в Северный Ледовитый океан, более значимая и вероятно главная сила в самом Арктическом бассейне – ею является гравитационное погружение морских вод, обусловленное процессом льдообразования и сопровождающим его также гравитационным опусканием концентрированных рассолов из распресняющегося льда.

Очевидно, что термохалинная конвекция исключается в пресноводных водоёмах и под айсбергами, откалывающимися от ледников суши, если последние не существуют на море так долго, что пресный лёд в них частично или полностью успевает заменяться морским.

Северный Ледовитый океан, разумеется не единственный на Земле водоём, в котором возбуждается термохалинная конвекция, приводящая к погружению холодных соленых вод ко дну.

7.5. Стужа льда в теплых океанах

О том, что в глубине всего Мирового океана, включая экваториальную и северные полярные области, распространены мощные толщи очень холодной воды с температурой от 2 °C до 0 °C знает, видимо, каждый школьник. Знают и о том, что эти воды скатываются со стороны полярных акваторий, одновременно поднимая вверх более нагретые воды теплых акваторий.

Нам остается еще раз удивиться, что температурная однородность глубинных вод Мирового океана сохраняется в условиях, когда приход тепла к поверхности океана различается в десятки и даже в сотни раз!

Разве не удивительно, что температура воды в глубине Атлантического океана, вблизи экватора между Южной Америкой и Африкой, составляет 0° ÷ 0,5 °C, то есть столько же сколько подо льдами Северного Полюса? Если мы сравним соленость глубинных вод на экваторе и на Полюсе, то тоже не обнаружим почти никакой разницы. Значит, и плотность глубинных вод всей океаносферы оказывается практически одинаковой. Из таких заключений легко сделать ошибочный вывод, что для глубинных вод Мирового океана не существует ни внешних (например, ветра), ни свойственной самой воде причин (различий в плотностях), способствующих перераспределению глубинных вод по всему земному шару.

Но обратим внимание на пороги (рис. 16), через которые перетекает плотно соленые и холодные воды из Северного Ледовитого океана в Атлантический океан и на карту[6] положения самых холодных вод во всем Мировом океане. Из сравнений следует, что слои воды с равной низкой температурой в Северном Ледовитом океане находятся на 3 000 ÷ 3 500 м выше, чем в Атлантическом, Тихом и Индийском океанах. Значит они находятся как бы на «горке» более плотной воды, с которой и «скатываются» в южные океаны.

Эта «горка» существует стабильно и постоянно пополняется, как мы уже узнали, за счет опускания утяжеляющихся рассолами вод, выделяющимися изо льда. Если теперь мы постараемся уточнить причину растекания глубинных холодных вод по всей океаносфере, то должны будем сказать, что она заключается не просто в стекании холодных вод, но и в существовании термохалинной конвекции в полярных акваториях, в свою очередь, обязанной образованию там льда из морской воды. Ещё короче можно сказать, что появление холодных вод в теплых океанах обязано льду и льдообразованию на полярных бассейнах. Вот как далеко протягивает свои «лапы» полярный лёд!

Когда же мы так уточнили природу холодных вод Мирового океана, то получаем возможность уверенно сказать, какие изменения или отклонения могут нарушить сложившуюся циркуляцию и теплообмен его глубинных вод.

А ими могут быть:

– исключение льда и льдообразования на полярных акваториях, что могло и может иметь место в длительной истории Земли или по воле человека;

– полное или частичное отсечение водообмена полярных водоёмов с Мировым океаном, вероятность которого также нельзя исключать ни в длительном естественном развитии Земли, ни при участии человека;

– временная или длительная теплоизоляция ледяного покрова полярных водоёмов, например, очень глубоким снежным покровом, прерывающим дальнейшее протекание льдообразования под ним, что полностью исключать нельзя;

– изменение солености верхних слоев полярных водоёмов, что трудно представить, но нельзя исключить полностью;

– опреснение всей океаносферы, что даже представить невозможно.

Думаю, что эти оценки могут пригодиться при палеогеографических исследованиях и изучения современных проблем климатологии. А теперь посмотрим, как собственно отражается термохалинная конвекция полярных водоёмов на состоянии термики внешних сфер Земли в наше время.

Заметим, что приведенный в предыдущем разделе способ расчета массы воды, вовлекаемой в термохалинную конвекцию рассолами, выпадающими из льда, не исключает той вероятности, что в подобную конвекцию вовлекается тем больший объем воды, чем меньше становится разница между соленостями поверхностных и глубинных вод. Важно только, чтобы она была. Это объясняется тем, что любое, даже незначительное повышение плотности одной массы воды над другой в конце концов должно вызывать их плотностную гравитационную стратификацию.

В то же время можно предполагать, что по мере увеличения общего объёма вод, вовлекаемых в конвекцию, интенсивность ее протекания при малых различиях плотностей легче может быть нарушена влиянием наложенных динамических факторов, например, течением, ветровым перемешиванием вод и т. д.

С такими необходимыми оговорками можно грубо определить сколько всего в океаносфере ежегодно погружается ко дну плотной и холодной воды под влиянием процессов, происходящих в плавучем льду.

Воспользуемся для этого известными данными об общих ежегодных оледенениях морей северного и южного полушарий и сведениями о различии средней солености воды в высоких широтах, почерпнутых из книги В. Н. Степанова «Океаносфера» (1983).

На морях северного полушария всего ежегодно образуется около 126 × 1011 т льда, а южного – 207 × 1011 т. По отношению к северному полушарию образование льда 85 × 1011 т в Северном Ледовитом океане и масштабы, вызываемой им термохалинной конвекции, выше уже определены. Остающиеся 41 × 1011 т льда при том же рассолении (до 5‰) и солености вод за пределами Северного Ледовитого океана 32‰, а глубинных 35‰, способны вызвать погружение ко дну ещё 36900 км 3 воды, что в 4 раза меньше, чем в Северном Ледовитом океане. Такая величина представляется правдоподобной, хотя возможно, что расчет может страдать недоучетом некоторых наложенных динамических явлений, способных здесь с большей вероятностью, чем в постоянно замерзающем океане, гасить интенсивность термохалинной конвекции.

Таким образом, всего в северном полушарии в термохалинную конвекцию вовлекается общий объем воды, равный, примерно, 186×103 км 3 в год. Если таким же путем определить интенсивность термохалинной конвекции в акваториях океанов южного полушария, то при солености поверхностных вод 34,7‰ в ходе рассоления льда до 8‰ здесь в термохалинное опускание холодных и соленых вод должно вовлекаться уже около 480×103 км3, что в 2,6 раза больше, чем в северном полушарии. Однако здесь менее интенсивная термохалинная конвекция определенно более всего и вскоре же нарушается значительной динамичностью циркумполярного течения западных ветров, оконтуривающего Антарктику. Впрочем, если то и другое имеет место, то эти факты могут явиться новым, дополнительным аргументом в пользу объяснения более низкой средней температуры поверхности океанов и атмосферы в южном полушарии по сравнению с северным. Из этого же следует, что поддержание придонной толщи тяжелых глубинных вод Мирового океана с большей вероятностью осуществляется термохалинной подледной конвекцией, происходящей в северном полушарии, а точнее в Северном Ледовитом океане, чем в южном полушарии, что в известной степени подтверждается меридиональным сечением поля солености Атлантического океана.

Интересно рассмотреть, насколько же остывает или, правильнее сказать, какое количество энтальпии теряет замерзающий Северный Ледовитый океан за счет протекания подледной термохалинной конвекции. Не сложно обнаружить, что величина эта незначительна. Для этого достаточно установить наибольший возможный предел охлаждения подледной воды рассольными каплями. Так, если из ежегодно намерзающего снизу на 70 см многолетнего льда выделится за год весь рассол, средняя температура которого вероятно может быть не выше минус 4 °C, заместившись подледной водой или мигрирующей за ним сверху пресной, то с каплями в относительном выражении удалится лишь 1,1 кДж/см 2 год. Такая величина оказывается сопоставимой, а часто и превышает фактически ранее определявшиеся величины потерь тепла водной массой под многолетним ледяным покровом Арктического бассейна. Свежие льды ежегодно намерзают на толщину в 2,5 ÷ 3 раза большую, чем многолетние. Тем же расчетом можно установить, что рассолы, выделившиеся из них, способны соответственно охладить подледную воду до 3,5 кДж/см 2 за год.

Зная площади распространения тех и других льдов (6,5 млн. км 2 и 2,35 млн. км2, соответственно) можно грубо определить, что общая внутренняя потеря тепла Арктическим бассейном от выпадающих из льда холодных рассолов, то есть от термохалинной конвекции, составляет абсолютную величину около 14 × 1017 кДж/год, что с избытком компенсирует весь объём тепла, поступающего в него из смежных теплых океанов.

До сих пор подобные потери многие исследователи, не отвергая возможного существования термохалинной конвекции, почему-то целиком относили на возможную прямую (без фазового превращения у нижней поверхности льда) передачу тепла в атмосферу, путем кондуктивной теплопроводности через лёд, которой, как выясняется, здесь вовсе может не быть.

7.6. Где и сколько теряет тепла мировой океан?

Видимо к числу общепризнанных относится мнение, что достаточной гарантией от внезапных климатических катаклизмов на Земле является чрезвычайно большая тепловая инерция Мирового океана. Показанные выше механизмы сдерживания и даже полного исключения потерь тепла водной поверхностью при её замерзании может вселить ещё большую уверенность в том, что Мировой океан является надежной защитой от катастрофического выхолаживания внешних сфер Земли. Однако такое мнение может изменится, если обратить внимание на то, что у океаносферы под воздействием гравитационного массо- и теплообмена возникают реальные, но до поры скрытые механизмы для возбуждения весьма скоротечных трансформаций глобального климата, как в сторону его резкого похолодания, так и в сторону потепления.

Допустим, что на каком-то участке Мирового океана расход тепла в атмосферу, а через неё и в космическое пространство, оказывается настолько значительным, что для его восполнения вынужденно отвлекается тепло всей океаносферы, причем в количестве, не восстанавливаемом его приходом к ней. В силу этого будет происходить общее остывание всей массы Мирового океана. Это остывание может растянуться на тысячелетия и не обнаруживать себя никакими термическими явлениями на поверхности Земли, в силу того свойства воды, что по мере охлаждения она погружается на глубину. Когда же подобное охлаждение продолжится до полного остывания всей толщи Мирового океана до температуры ее замерзания и выхода остывших вод, по крайней мере на значительной площади океаносферы, на поверхность, то далее становится вполне вероятным уже скачкообразное замерзание (оледенение) океаносферы в высоких широтах. Если в наше время значительные акватории Норвежского, Гренландского и Баренцева морей не замерзают лишь потому, что подпитываются теплыми водами Мирового океана, то, очевидно, что они не смогут сопротивляться оледенению, если остынет основная масса водной оболочки Земли.

Таким образом, длительная количественная (эволюционная) форма изменений термики океаносферы с выходом холодных вод на поверхность может перерастать в скачкообразное качественное (революционное) преобразование термики всех внешних сфер Земли – в оледенение её наименее обеспечиваемых теплом акваторий в высоких широтах. С оледенением приполярных морей вступают в действие механизмы, стимулирующие разрастание оледенений (появление галоклина, увеличение альбедо, понижение уровня снеговой линии и т. д.), но вместе с этим утрачивают значимость некоторые причины, приводящие к необратимому охлаждению Мирового океана, поскольку море покрывается ледяным покровом, отчего исчезают очаги увеличенной потери тепла открытыми водами и так далее. Вследствие последнего океан снова начинает прогреваться с поверхности, увеличивается испарение и накопление снега, не успевающего стаивать на оледеневших пространствах приполярных областей, приводящие здесь к оледенению суши.

По мере дальнейшего прогревания Мирового океана в глубину восстанавливается непосредственное тепловое воздействие поверхностных теплых течений, а, в конечном счете, влияние их на дегляциацию высоких широт, в частности, на повышение уровня линии снегового накопления. В этих условиях могут оставаться не тающими лишь ледники суши, расположенные на отметках, превышающих уровень снеговой линии (Антарктида, Гренландия и горные ледники). Вместе с этим на освободившихся от ледяного покрова морях высоких широт снова могут возникать очаги до поры увеличенной необратимой многолетней потери тепла массой Мирового океана. И так далее. Эти изменения термики океаносферы могут усиливаться в ту или иную сторону вековыми изменениями радиационной напряженности из-за астрономических причин. И хотя мы усматриваем, что Мировой океан в конце концов может справиться с оледенением, нашим потомкам не станет легче от того, что он же может скрытно подготовить «временное» (длительностью в 900 лет!) оледенение.

В пределах необходимой нам точности мы уверены, что современный теплообмен Земли с окружающим пространством балансируется. В то же время знаем, что в истории Земли льда становилось то больше, то меньше, а значит, и сами периоды похолоданий и потеплений климата скорее всего постоянно сменяли один другого. Отсюда столь же вероятно, что и сейчас строгого общеземного баланса теплообмена просто не существует, а идет скрытно изменяющийся либо приход, либо расход тепла. Не зная в какую сторону идёт то или иное изменение, мы не знаем, к чему быть готовыми. Пока можно предположить, что наиболее надежным индикатором оборота тепла в ту или другую сторону является все же океаносфера, поскольку именно она обладает, безусловно, самой теплоемкой подвижной массой, осуществляющей львиную долю всего теплообмена Земли. Только через испарение и конденсацию воды оборачивается 83 % всей поступающей к земной поверхности энергии солнечной радиации. Не мало ее усваивается и расходуется при таянии и намерзании всех видов морского и наземного льда. Лишь в десятиметровом слое океанических вод содержится тепла в 4 раза больше, чем во всей толще атмосферы.

На страницу:
14 из 23