Оценить:
 Рейтинг: 0

Природа и свойства физического времени

Жанр
Год написания книги
2023
Теги
<< 1 2 3 4 5 6 7 >>
На страницу:
6 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

Вразумительно ответить на эти и другие аналогичные вопросы нет никакой возможности. Противоречивая сущность Ньютоновой концепции не позволяет этого сделать.

Если же взять анализируемое выражение для временного интервала, то легко увидеть, что такое время может быть, как неуничтожимым, так и уничтожимым. Все зависит от того, какой именно процесс мы рассматриваем. С нашей точки зрения, совокупное движение во Вселенной – процесс неуничтожимый, во всяком случае до тех пор, пока существует сама Вселенная. Поэтому время во Вселенной также неуничтожимо. Но вот движение поезда и соответствующий ему временной интервал вполне уничтожимы одним движением руки машиниста. Следует только обратить внимание на то обстоятельство, что уже прошедшая часть временного интервала уничтожению не поддается, во-первых, так как она прежде уже была осуществлена и, следовательно, уже принципиально не наблюдаема, а во-вторых, так как она оставила изменения в самом процессе и в среде, где он происходил. И лишь в нашем сознании она остается неизменной и сохраненной на любое потребное для нас время.

5.4. Неощутимость

Для абсолютного времени неощутимость является таинственным, но, несомненно, генетически принадлежащим ему качеством, поскольку оно находится в том же ряду, что и бесконечность, неуничтожимость, независимость, неизменность. Это качество прямо соответствует всеобщности и независимости абсолютного времени и лишь дополняет их как обязательное проявление идеальности. Кажется совершенно естественным, что «другая материя», хотя и взаимодействующая с материей нашего мира в любой его точке, не должна обнаруживать свое присутствие в силу своей полной независимости от любых процессов, которые она увлекает в неизвестное будущее своим неотвратимым односторонним движением.

Когда же мы рассматриваем временной интервал, то становится ясно, что неощутимость обусловливается нематериальностью самого времени. Поскольку наблюдаемым, ощутимым является исключительно сам единичный процесс, то само по себе свойство этого процесса, заключающееся в его продолжительности, не ощущается нами изолированно, а лишь через изменения, создаваемые, во-первых, самим исследуемым процессом, и, во-вторых, через изменения, происходящие в процессах, формирующих и поддерживающих существование нашего тела. Пресловутое «ощущение времени», присущее некоторым представителям рода человеческого, как раз и основывается на изменениях, создаваемых процессами, происходящими в центральной нервной системе и сопутствующих им процессах в периферийных органах. Таким образом, хотя времени самого по себе мы не ощущаем, изменения, происходящие в нас самих и окружающем нас мире, позволяют опосредованно судить о его течении с достаточной долей определенности.

5.5. Подвижность

Всеобщее абсолютное время, по Ньютону, «протекает». Почему оно течет, из самого определения времени, как мы уже отмечали, понять невозможно. Это свойство принимается аксиоматически лишь потому, что в окружающей нас действительности всегда происходят одни и те же изменения – рождение, развитие, смерть. Этот порядок остаётся неизменным на протяжении тысячелетий, и ни разу за всю историю наблюдений последовательность стадий не была нарушена. Поэтому наблюдаемая последовательность событий, их течение трансформировались в нашем сознании в непреодолимое и непрерываемое течение времени. Стало общепринятым считать, что это время заставляет все явления и материальные сущности развиваться так.

Когда же мы рассматриваем временной интервал, то становится понятным, что течение времени есть не что иное, как развитие процесса. Именно из-за того, что вложенная в процесс сторонняя энергия побуждает его к развитию, а сопротивление этому развитию не дает процессу развиться мгновенно, появляется время, которое течет из-за того, что протекает генерирующий время процесс.

Таким образом, мы выяснили, что в действительности не время пронизывает материю и влечет ее в неизвестное будущее, а материя (процесс), развиваясь, генерирует время.

5.6. Однонаправленность

Всеобщее абсолютное время, как принято считать, не просто течет, а течет строго в одну сторону: из прошлого в будущее. Почему оно так течет, из самого определения времени также понять невозможно. Это свойство принимается аксиоматически тоже лишь потому, что всякое развитие в природе происходит в смысле времени лишь в сторону его больших значений. И направленность событий на протяжении тысячелетий наблюдения также ни разу не была нарушена.

Однако в физических законах, опирающихся на концепцию абсолютного времени, как уже отмечалось выше, на его однонаправленность ничто не указывает. Множество законов, если не все, оказываются Т-инвариантными. Между тем при попытке представить обратный ход физических процессов, исследователи сразу натыкаются на парадоксы. Например, никто никогда не видел, чтобы теплая вода в стакане самостоятельно разделилась на две части – горячую и холодную, хотя законы движения это не запрещают. То есть физические законы предполагают изотропность времени, хотя из практики точно известно, что время анизотропно. Способ обойти это противоречие, когда ненаблюдаемые события относят к статистически маловероятным, сам по себе неубедителен и теоретически малосостоятелен. Поэтому вопрос о том, почему в реальных условиях время однонаправленно, а выведенные с его использованием законы Т-инвариантны, остается невыясненным.

Перейдем теперь к интерпретации времени в виде временногоинтервала. В этом случае двойной знак перед квадратным корнем в выражении для временного интервала показывает, что в природе, то есть в известной нам Вселенной, до тех границ, где мы можем определить применимость второго закона Ньютона, существуют два направления процессов и соответствующих им временных интервалов. То есть процессы могут идти как из нашего прошлого в наше будущее, так и из нашего будущего в наше прошлое.

Во многих рассуждениях о Т-инвариантности физических законов предполагается, что по течению времени в соответствии с формулировками этих законов можно передвигаться с равным успехом как из прошлого в будущее, так и из будущего в прошлое. Причем в первом случае процесс протекает нормально, а во втором – инверсно. Потом рассматриваются различные парадоксы, возникающие именно в этом случае. Но знак минус перед значением временного интервала ничего не меняет в самой структуре зависимости. Значит, процесс принципиально не может идти инверсно. Когда процесс движется по другой временной ветви, он сохраняет свое нормальное строение и протекает как обычно, с той только разницей, что развивается из нашего будущего в наше прошлое. Таким образом, парадоксы обратного хода устраняются, но появляются свойства, пока непонятные наблюдателю, время которого течет из нашего прошлого в наше будущее, при наблюдении процессов, идущих во встречном времени. Вопрос заключается также и в том, можем ли мы хотя бы в принципе наблюдать из нашего времени встречное течение процессов?

Что касается самой однонаправленности, то в случае единичного процесса отсутствие в его течении скачков в противоположных временных направлениях вполне согласуется со вторым началом термодинамики, причем как для плюс-, так и для минус-времени. При этом не возникает никаких парадоксов, так как согласно закономерности для временного интервала, в нашей Вселенной существует два независимых встречных направления возрастания энтропии. Отсюда появляется возможность ответить и на вопрос: почему известные физические законы, в целом правильно описывающие реальный мир, находятся в абсолютном противоречии с реальностью, когда речь заходит о Т-инвариантности.

Реальное физическое время (продолжительность реальных процессов) действительно однонаправленно и двигаться по нему вспять невозможно. А Т-инвариантность физических законов вытекает из существования во Вселенной двух независимых ветвей развития процессов, направленных во времени навстречу друг другу.

Эти ветви объединены только в абстракции, в физических законах. Эти законы не различают временные направления потому, что они сформулированы не только для нашего мира, а сразу для всей Вселенной, которая состоит из двух самостоятельно существующих, но взаимосвязанных и взаимодействующих образований. На практике же каждая временная ветвь в реальности и по отдельности однонаправленна, и лишь совместно обе они обеспечивают Т-инвариантность физических законов.

5.7. Необратимость

Необратимость абсолютного всеобщего времени есть частный случай его неуничтожимости. То есть равномерный непрерывный ход его мы не можем ни остановить, ни повернуть вспять.

Когда же мы рассматриваем свойства временного интервала в нашем понимании, то на первый взгляд это свойство упраздняется, а существование двух встречных Т-ветвей подтверждает возможность обратного хода процесса. Кажется, что процесс легко обратить вспять, поскольку существующие физические законы этого не запрещают, а зависимость для временного интервала прямо предоставляет возможность для обратного хода времени.

Но на самом деле необратимость присутствует и в нашем случае – она определяется вторым началом термодинамики: обратить реальный процесс, не вкладывая в него дополнительной энергии, из-за неизбежных энергетических потерь при его протекании невозможно. Поэтому, когда мы обращаем процесс вспять, мы просто прекращаем первоначальный процесс и начинаем новый, вкладывая в него эту дополнительную энергию. Но оба процесса будут в смысле времени протекать в одном направлении. Когда же мы переходим на другую ветвь протекания процессов (теоретически, конечно), с другим направлением движения к возрастанию энтропии, необратимость временного интервала сохраняется и там. Все происходит точно так же, как и в первом случае, несмотря на то что направление «хода» времени (протекания процесса) меняется на обратное.

5.8. Определенность

В случае абсолютного времени определенность есть возможность измерения временной длительности. Следует уточнить, что в этом случае означает выражение «измерить время». Если придерживаться концепции всеобщего, абсолютного времени, которое пронизывает собой все процессы и приводит их в движение, то нужно признать возможной абсурдную ситуацию, когда стрелки часов движет не вкладываемая в механизм энергия часовой пружины, а, наоборот, часовая пружина имеет возможность раскручиваться только потому, что ход времени увлекает за собой весь часовой механизм, приводя его в движение. Ситуация, напоминающая Птолемееву систему, когда Солнце вращается вокруг Земли, потому что ангелы катят его по орбите.

Измерить время в этом случае значит определить, насколько ход времени раскрутил предварительно заведенную пружину, подсчитав количество оборотов стрелок часов.

Но если мы переходим к временному интервалу в нашем понимании, то ситуация ставится с головы на ноги. В самом деле, существует некий единичный процесс; пусть это будет прямолинейное движение тела. Измерить его длительность внутри самого процесса, как известно, невозможно. Единственная возможность сделать это – сравнить его с другим процессом. То же самое, что измерить расстояние между двумя точками, например, на плоскости. Берется посторонний предмет, длина которого принимается за единицу масштаба, и прикладывается к измеряемому объекту.

Когда мы измеряем длительность временного интервала, таким предметом чаще всего является равномерный и непрерывный (в ограниченном, конечно, смысле) процесс. А поскольку нам необходимо иметь еще и единицу измерения продолжительности процесса, то для ее создания приходится чаще всего выбирать процесс периодический, принимая за такую единицу один период или его часть. Вид применяемого процесса при этом не играет никакой роли. Важно лишь удобство его использования при счете времени. Поэтому раннее развитие механики решило эту задачу с помощью создания часового механизма. Поскольку равномерное и непрерывное движение есть простейший вид движения, то воспроизвести его с помощью механизма значительно проще, чем какой-нибудь более сложный вид. Периодичность же процесса позволяет значительно упростить создание единицы масштаба. Линейный процесс тоже можно приспособить для измерения времени, если каким-то образом уметь поделить его на части. В Античности таким процессом служило истечение жидкости из сосуда через небольшое отверстие, а в Средние века для этого наносили на свечи полоски-метки через равные расстояния.

Следует также заметить, что время генерируется любым процессом, то есть движением. С этой точки зрения нет никакой разницы между, скажем, движением поезда и движением шестеренок часового механизма. И тот и другой процесс равно генерируют время. И сами по себе в отсутствие наблюдателя эти процессы как факты генерации времени совершенно равноценны. Другое дело, когда наблюдатель выделяет некий процесс и хочет изучить его или хотя бы определить, каким именно образом можно его использовать. То есть встает вопрос об измерении времени. И тогда какой именно процесс принять за измеряемый, а какой – за измеряющий, зависит исключительно от произвола наблюдателя. Можно измерять время движения поезда при помощи движения стрелок часов, но можно и наоборот: измерять время движения часовых стрелок при помощи движения поезда, что в принципе одно и то же. В подобном случае на первый план выступает лишь удобство применения процесса для счета времени с точки зрения наблюдателя. И хотя разные по характеру процессы будут по-разному генерировать или измерять время, использование того или иного из них для временного счета всегда определяется его – наблюдателя – произволом.

Но для наблюдателя, в силу направленности его интереса, между понятиями «генерировать время» и «измерять время» существует определенное отличие. С точки зрения генерации любой процесс, чья длительность не равна нулю, время генерирует. Но генерирует его в виде безликой неопределенной и неотличимой от характеристик других процессов продолжительности. Пока в безбрежный океан различных продолжительностей не вмешивается наблюдатель, все они равноценны между собой как источники длительностей. Неравноценными они становятся лишь внутри определенной совокупности процессов, в результате протекания которых происходят изменения в окружающей нас реальности, но сами по себе, безотносительно к исходу развития этой совокупности, они ничем не отличаются друг от друга. И лишь когда наблюдатель вмешивается в ход исследуемого процесса, измеряя продолжительность его путем сравнения с продолжительностью эталонного, лишь тогда эта продолжительность превращается в известное нам, «постигаемое чувствами» время как мера этой продолжительности.

Итак, стрелки часов под действием часовой пружины равномерно и периодически обходят циферблат, который, в свою очередь, поделен на части, и тем самым позволяют прикладывать один такой оборот или его часть к процессу движения тела. Считая число оборотов стрелок, мы измеряем время протекания исследуемого процесса в заранее обусловленных нами единицах. Никакой мистики и никаких ангелов для этого не требуется.

С повышением точности часов неопределенность, которая присутствует в каждом реальном измерении, может быть сделана сколь угодно малой.

Несмотря на некоторое количество условностей, сопровождающих измерение времени, зависимость для временного интервала позволяет сделать вывод о его определенности, не прибегая к внешним способам измерения, так как определить его величину можно измерением других величин: массы, расстояния между двумя точками в пространстве, приложенной силы либо энергии в целом.

Поэтому можно считать, что определенность временного интервала в нашем понимании внутренне присуща ему, так как она присуща самому единичному процессу.

5.9. Аддитивность

В применении к абсолютному времени аддитивность заключается в одноразмерности при определении временных промежутков. Это требование означает, что часы, которые применяются для определения времени, должны иметь одинаковую разметку, одинаковую скорость хода и сравнимую точность. Тогда сложение временных промежутков сводится к простой математической операции. Именно это мы и наблюдаем на практике.

Но требования такого рода в Ньютоновой концепции вытекают из нелепого для часовых дел мастера представления, что часы изготавливаются одинаковыми потому, что в любой точке Вселенной ход времени одинаков и, чтобы механическая система точно его отражала, требуется, чтобы все часы были бы идентичными или, по крайней мере, близкими к такой идентичности.

Когда же мы переходим к временному интервалу в рассматриваемом нами виде, достаточно иметь только выбранную систему единиц, одинаковую для всех единичных процессов. Тогда сложение интервалов можно проводить абстрактно, без измерения каждого интервала, вычислив все необходимые значения из характеристик генерирующих их процессов. Конечно, и в этом случае никто не мешает нам производить измерения их с помощью одинаковых периодических процессов (часов), но такая операция в данном случае не является обязательной. Опять можно отметить, что аддитивность внутренне присуща временному интервалу, если мы складываем интервалы сходных по характеру процессов.

Остальные свойства абсолютного времени – независимость, неизменность, непрерывность, равномерность, однородность – требуют отдельного рассмотрения.

6. Теория действительного аргумента

Следующие пять свойств абсолютного времени: независимость, неизменность, непрерывность, равномерность, однородность – образуют особую группу, связанную не столько с мировыми константами, сколько со способом отображения физической реальности в научном исследовании.

Вся проблема тут распадается на два больших вопроса. Во-первых, как в нашем сознании сформировалось представление о том, что у абсолютного времени существуют эти свойства? Путем каких представлений или умозаключений мы пришли к выводу, например, что оно однородно? И, во-вторых, какие особенности научного метода вызвали интуитивную уверенность в том, что все пять вышеуказанных свойств обязательно должны быть отражены в формальном представлении реальных физических процессов?

Поэтому рассмотрим все эти свойства абсолютного времени и определим, какими из них либо противоположными им обладает выведенная нами зависимость для временного интервала.

6.1. Независимость и неизменность

«…Без всякого отношения к чему-либо внешнему…» – утверждает Ньютон. И это странно, так как на практике время, как никакой другой параметр, зависит от принятой системы единиц. Сами единицы временного масштаба, которые применялись уже при его жизни, говорят об этом. В сутках двадцать четыре часа. Час делится на шестьдесят минут, минута – на шестьдесят секунд. Такой способ счета достался нам от жителей древнего Вавилона и, не будь этой преемственности, давно был бы заменен более удобным десятичным счетом. Относительность способов измерения времени и зависимость их от случайных обстоятельств налицо, но тем не менее абсолютное время, по Ньютону, независимо. Объяснение этому феномену можно найти лишь в том, что в классической механике нет необходимости соотносить время с каким-либо другим параметром. Зависимость, изменяемость времени не только не применяется в системе законов Ньютона, но и намеренно исключается из этой системы потому, что может исказить или замаскировать действие других составляющих движения. Время служит в ней всеобщим аргументом и не нуждается в иных атрибутах, кроме длительности, которая реализуется через движение в сторону больших значений со строго постоянной скоростью. То есть, конструируя свои законы, Ньютон сознательно очистил время, употреблявшееся в его выкладках, от любых, кроме равномерного и одностороннего хода, отношений с материей, свойства которой фигурировали в этих законах, оставив ему одну лишь длительность. А поскольку сконструированное Ньютоном время вместе с другими параметрами движения впоследствии породило определенную форму физического научного знания, то и все последующие научные изыски были построены на этом фундаменте.

Построения Эйнштейна, наделавшие столько шума, лишь слегка подкорректировали Ньютонову картину мира, но при этом вовсе не изменили взгляда на свойства абсолютного времени. Он, Эйнштейн, совсем не собирался предлагать что-либо новое, поскольку для решения задач, которые он перед собой поставил, вполне достаточно было применить Ньютонову концепцию, если ее слегка модернизировать. В своей статье «К электродинамике движущихся тел» Эйнштейн пишет: «Если в точке А пространства помещены часы…» и далее «1) если часы в В идут синхронно с часами в А…». Заметим, что в разные точки пространства он помещает часы, измеряющие все то же Ньютоново абсолютное время. Везде, где упоминаются часы, речь идет о воспроизводимом ими периодическом процессе, т. е. фактически Эйнштейн манипулирует не временем реальных физических процессов, а его аналогом, каким является ход часов. Кстати, сам он вовсе не скрывает этого обстоятельства и везде говорит не о времени вообще, а о ходе часов как механизма для измерения времени. Далее он показывает, что это время (или то, что он принимает за всеобщее время, – длительность изолированного периодического процесса, организованного с помощью примитивного механизма) все же изменяется в зависимости от условий движения, но по-прежнему остается Ньютоновым – в целом равномерным и однородным, которое по неким законам локально изменяет свой бег, согласуя его со скоростью движения. В «Сущности теории относительности» он замечает, что «физической реальностью обладают не точка пространства и не момент времени, когда что-либо произошло, а только само событие». Может показаться, будто он понимает, что существует только единичный процесс и временной интервал. Но тут же, поясняя свою мысль, он заявляет о новом абсолютном параметре, включающем время и пространство. «Нет абсолютного (независимого от пространства отсчета) соотношения в пространстве, и нет абсолютного соотношения во времени, но есть абсолютное (независимое от пространства отсчета) соотношение в пространстве и времени…». От того, что к абсолютному времени он добавляет еще и абсолютное пространство, абсолютность времени в любом смысле в его построениях вовсе не устранена. Далее, в общей теории относительности он заставляет время изменяться уже в согласии с силой тяготения в изменяющемся пространстве, но во всем остальном это все то же абсолютное время. То, что у Эйнштейна оно несколько «обстрижено», сути дела не меняет, так как остальных его свойств теория не касается. Мало того, когда используется пространственно-временной континуум, Ньютонов взгляд на время проглядывает изо всех положений этого построения. И хотя Эйнштейн и предупреждает, что время всего лишь число, у Минковского тем не менее подразумевается, что время – некая особая форма псевдоматерии, составляющая в совокупности с пространством неразрывное единство, которое вместе с остальной материей и есть наша Вселенная. То есть абсолютное время, изменяясь в угоду Эйнштейну под воздействием материи, остается для нее по-прежнему чем-то внешним, но, несомненно, одноранговым ей. Здесь противоречивость Ньютонова абсолютного времени находит свое крайнее выражение, так как от времени, составляющего вместе с пространством четырехмерный континуум, требуется уже даже не псевдо-, а самая обычная материальность.

Если же перейти к временному интервалу, свойства которого мы здесь рассматриваем, то изменяемость, зависимость от параметров движения выступает с отчетливой наглядностью.

Временной интервал принципиально зависим и изменяем. Поскольку условия протекания процесса в реальности, как правило, меняются, то и длительность временного интервала меняется соответственно.

Причем для того чтобы обнаружить эту изменяемость, вовсе не обязательно переходить в движущуюся систему координат. Все изменения возможно наблюдать в одной и той же неподвижной системе.

Таким образом, изменяемость времени, открытая Эйнштейном, является удивительной и парадоксальной лишь при использовании абсолютного времени. При использовании временного интервала она является естественным и неотъемлемым его свойством.

6.2. Непрерывность, равномерность, однородность

Откуда у абсолютного времени эти свойства, объяснить рационально не представляется возможным. Они также подразумеваются интуитивно и вводятся также аксиоматически. Между тем, если обратиться к истории науки, источник их происхождения просматривается вполне недвусмысленно. Ряд натуральных целых чисел, который происходит из устного счета, также непрерывен, равномерен и однороден, конечно с большой долей условности, из-за дискретности этого счета. Когда мы считаем предметы, то всегда увеличиваем количество предметов на одну единицу. Это сразу дает нам условную равномерность и однородность числового ряда, а в пределах некоторого определенного числа предметов их порядковый номер возрастает непрерывно.
<< 1 2 3 4 5 6 7 >>
На страницу:
6 из 7

Другие электронные книги автора Леонид Михайлович Мерцалов