Сама по себе история переписки Шиккарда с Кеплером и ее обнаружения прелюбопытна. В 1617 году великий Кеплер, признанный Имперским математиком Великой Римской империи, проезжая через город Тюбенген, посетил местный университет, где свел знакомство с молодым преподавателем, протестантским священником Шиккардом. Заметная разница в возрасте и в социальном положении не помешала этим двоим найти общие интересы и затем вступить, как это было принято, в многолетнюю научную переписку. Всего в двух посланиях Шиккард кратко описал свое изобретение, на этом все. Машина Шиккарда осталась бы в безвестности, если бы в начале 30-годов XX века существовавшие тогда Баварская академия наук и Немецкий исследовательский союз не решили опубликовать полное эпистолярное наследие Кеплера. И тут выяснилось, что заметная часть архива содержится в собрании документов, купленном по указанию Екатерины II и помещенном на хранение в Пулковскую обсерваторию, где они остались в анналах невостребованными полтора столетия. В этом массиве писем в 1935 году немецкие архивисты неожиданно для себя обнаружили два письма Шиккарда, датированные 1623 годом, их заинтересовало содержащееся в письмах описание доселе неизвестной им машины, названой автором «часами для счета». Война прервала эту деятельность, но в 1950 году один из биографов Шиккарда нашел в Земельной библиотеке, расположенной Штутгарте, рисунок, который, как можно предположить, является эскизом машины Шиккарда, предназначенным для мастера. Только в начале шестидесятых удалось собрать отрывочные сведения и было принято решение воссоздать машину в том виде, в каком она представлялась небольшой группе историков и математиков.
В целом утверждениям о реальности машины Шиккарда, к достоверности находок и точности реконструкции следовало бы относиться с осторожностью, никакой научной экспертизы подлинности документов нет и не было, но в большинстве публикаций о машине представляют реплику и говорят о ней как о свершившемся факте.
По мнению реставраторов машина состояла из двух независимых частей – одна предназначалась для выполнения умножения и деления, вторая для сложения и вычитания. Сочетать в одном механизме оба действия научились намного позже, то есть, по сути, это могли быть две разные машины, объединенные в одном конструктивном исполнении. Первая представляла собой еще одну попытку механизировать работу с палочками Непера, вероятно она состояла из цилиндров с нанесенными на внешние поверхностями таблицами умножения, они приводились бы во вращение колесами с десятью зубьями, находящимися в таком зацеплении, что, если правое колесо повернется десять раз, то находящееся слева от него колесо сделает один оборот. Источник столь детальной реконструкции неизвестен, в ее достоверность трудно поверить, тем более, что нет упоминания о решении проблемы переноса. Сумматор же имеет много общего с педометром, в данном случае есть упоминание о решении проблемы переноса, оно содержится в письме Шиккарда: «Я создал способную считать машину, состоящую из одиннадцати полных и шести неполных шестерен. Вы будете приятно удивлены, когда увидите, как она переносит единицу в старший разряд при сложении и занимает десятку при вычитании».
К несчастью, судьбы автора и его машины сложились трагично, сам Шиккард и вся его семья погибли во время эпидемии холеры, а его труды были забыты за годы Тридцатилетней войны.
Паскалина
Достоверно и не может быть подвергнуто сомнению то, что первым созданным механическим сумматором была Паскалина Блеза Паскаля, ее называли по-разному: Pascaline, Pascale или Pascalene. Машина оказалась одним из самых хитроумных для своего времени инструментов, к тому же она внешне весьма привлекательна. Эта прелестная француженка украшает целый ряд музейных экспозиций, из 8-ми сохранившихся машин 5 находятся во Франции, по одному экземпляру в США и Германии, один в частной коллекции, что же касается копий, то их не стесняются выставлять даже такие музеи как Лондонский музей науки. Но с практикой счета дело обстоит похуже, что неудивительно, механика, построенная на известных с античных времен архаичных цевочных колесах, не могла соответствовать замыслу.
Цевочным называют такое примитивное цилиндрическое зубчатое колесо, у которого зубья выполнены в виде цилиндрических штифтов с осями, параллельными оси зубчатого колеса. Это самый несовершенный тип зубчатого зацепления, он неплохо работает в грубых мельничных механизмах и даже в башенных часах, но никак не подходят для точного прибора, поскольку зубцы не находятся в постоянном зацеплении и велики люфты. Из-за этого Паскалина была способна лишь на тривиальные арифметические операции, но заслуга Паскаля в том, что ему удалось открыть подход к решению проблемы переноса, поэтому его следует считать отцом сумматоров, за последующие три века было сделано огромное количество усовершенствований, но основной принцип построения шестеренчатых сумматоров, открытый Паскалем, сохранился.
Паскалина, безусловно, самая известная механическая счетная машина прошлого, рассказы о ней обычно начинаются с умилительной пасторальной притчи о любящем сыне, который создал ее из желания облегчить труд своему перегруженному работой отцу, бедному налоговому служащему. Как большинство, и эта история полуправда. Правда то, что отца звали Этьен Паскаль и он действительно в молодости был скромным фискальным чиновником, но проявив талант предпринимателя, смог за считаные годы составить приличное состояние и, как это было принято во Франции, зажить жизнью обеспеченного рантье. В 1626 году, когда Блезу было всего три года, отец, овдовев, ушел от дел, переехал из Оверни в Париж и посвятил себя воспитанию и образованию сына и двоих дочерей.
Блез-сын оправдал отцовские чаяния, он с детства проявил способности вундеркинда, в 16 лет написал эссе о конических сечениях, настолько содержательное, что современники не могли поверить в его авторство, сам Рене Декарт высказал подозрение, сочтя Этьена Паскаля подлинным автором. Но Блез успешно опроверг сомнения оппонентов в его таланте, когда всего за несколько лет обрушил на них мощный творческий поток. Он открыл наличие атмосферного давления, физические законы, связанные с гидравликой, занимался теорией вероятностей из желания понять закономерности азартных игр, был не чужд общественной жизни, став позже одним из организаторов общественного транспорта в Париже.
Мало кто знает, что Паскаль не избежал и свойственных своему времени заблуждений, посягнув на создание вечного двигателя, но в отличие от безумцев, бесплодно тративших на это бесперспективное дело свою жизнь, он оказался умнее и рациональнее, попутно разработал ту самую рулетку, которая остается главным атрибутом всей современной игровой индустрии. В ней удалось объединить вращающееся колесо с азартной итальянской игрой Biribi, представлявшей собой нечто подобное лото. Можно только удивляться что ни в Монте-Карло, ни в Лас-Вегасе нет памятника Паскалю и трудно представить какими могли бы быть патентные отчисления.
Паскаль был чрезвычайно религиозен, незадолго до кончины он написал трактат «Мысли о религии и других предметах» (Pensеes sur la religion et sur quelques autres sujets), где наряду с апологетикой христианства и защитой его от критики со стороны атеизма, он описал и Паскалину.
Кто знает, изобрел бы он ее, если бы не начавшаяся война, позже названная Тридцатилетней, которая оказалась косвенным стимулом. Война нарушила семейную идиллию, из-за разразившейся финансовой катастрофы правительство перестало платить по займам и в результате Паскаль-старший оказался на грани банкротства. Крупные инвесторы, такие как он, стали сопротивляться произволу, чем вызвали гнев всемогущего кардинала Ришелье, которого, вопреки утверждениям Дюма, финансы интересовали больше, чем проделки мушкетеров. Ришелье поначалу обрушил свой гнев на сопротивлявшихся ему рантье, но потом, осознав, что без их участия ему не удастся ничего сделать, он помиловал своих противников, дав при этом некоторым из них высокие должности. Паскаль-старший в 1639 году был назначен налоговым управляющим всей Нормандии и на этом посту он оказался перегружен вычислениями. Юный Блез ассистировал ему и, осознав сыновий долг, в 1642 году будучи девятнадцатилетним решил помочь отцу, механизировав часть его работы.
Появлению Паскалины еще поспособствовали лекции иезуитского монаха и математика Жана Керма (Jan Ciermans, 1602-1648), прослушанные Паскалем в юности. Из них он узнал об арабских методах вычислений с применением волвелл (volvelle) – простых устройств, собранных из наложенных друг на друга концентрических дисков. Волвеллы были изобретены в Древней Греции и представляли собой снабженные шкалами диски разного диаметра, изготовленные из пергамента или бронзы и насаженные на одну ось. Арабы же их усовершенствовали и научились применять волвеллы не только в целях математических вычислений, но и как было принято в те годы для астрологических предсказаний. В Западной Европе волвеллы появились в XII веке, встречаются они и сегодня, но лишь как сувенирные бумажные дисковые калькуляторы-игрушки. Паскаль вложил новую жизнь в заложенную в волвеллы идею и разработал на ее основе механический сумматор. Некоторые немецкие исследователи прослеживают еще и цепочку от Паскаля к Кеплеру. Они утверждают, что через своих преподавателей, знакомых с Кеплером, он мог узнать о машине Шикакрда и эта информация могла повлиять на возникновение замысла о создании собственной машины. Но, как говорил великий Станиславский: «Не верю!»
Впервые описание Паскалины появилось не в собственных трудах Паскаля, а в «Энциклопедии» Дидро. Предназначение устройства отражено в конструкции: оно достаточно неплохо складывает, хуже вычитает, умножать может только в теории. Основная модификация Паскалины была восьмиразрядной (ее младшие разряды приспособлены для оперирования с денье и су), но были и пяти, и десятиразрядные версии для работы только с десятичными цифрами. В базовом варианте первый разряд был двадцатеричным, а второй двенадцатеричным, потому что в те времена французская монетарная система была сложнее современной. Она отчасти повторяла английскую систему, в ливре было 12 денье, как и в фунте – шиллингов, а эти единицы соответственно делились на 20 су или пенсов. Этим сложности денежной системы не исчерпывались. Был еще и инженерный вариант для работы с современными Паскалю мерами длины – с туазами, футами, дюймами и линиями.
Внутри латунной коробочки имелось арифметическое устройство в виде регистра, состоящего из цевочных шестерен с храповиками, обеспечивающими вращение только в одном направлении и, что самое важное, механизм переноса на случай, когда сумма в разряде больше девяти. Этот механизм переноса имеет общее с конструкцией Фернеля. Работа с механическим суммирующим регистром напоминает то, что делается в электронных регистрах, построенных на триггерах. Для сложения нужно:
сбросить предыдущий результат путем вращения барабанов до тех пор, пока в каждом из окошек не появятся нули;
ввести последовательно, начиная с младшего разряда, первое слагаемое, специальным стержнем при этом фиксируется положение, соответствующее цифре, а барабан вращается до этого упора;
таким же образом вводится второе слагаемое, и на дисплее можно видеть полученный результат.
Вычитание заметно сложнее, но Паскаль нашел решение, многократно повторенное в будущем – использование дополнительных кодов, то есть вычитание заменяется суммированием с дополнением до ближайшего наибольшего целого. Есть потенциальная возможность выполнить на Паскалине и умножение, и деление, но овчинка явно не стоит выделки.
На протяжении XVIII и XIX веков у Паскаля было несколько преемников, но их машины остались единичными экземплярами. Прогресс механических устройств сдерживался неразвитостью точного приборостроения, отсутствием промышленных стандартов и общей низкой культурой производства. Если в устройстве есть последовательность несовершенных взаимосвязанных шестерен, то на каждой паре значительно теряется крутящий момент, следовательно, в каком-то пределе его не хватит для преодоления трения в очередном узле. Например, когда современными средствами реконструировали таинственное счетное устройство Леонардо да Винчи, то оказалось, что работать оно не сможет: приложив усилие к первому колесу, не удается, увы, провернуть последнее.
Изящность внешности Паскалины скрывала заметные слабости, она страдала от частых сбоев в работе. Паскалину реально можно рассматривать только в качестве сумматора, остальные операции были слишком тяжелы для нее. К тому же стоимость устройства была чрезвычайно высока и непропорциональна его эффективности, поэтому среди современников Паскаля доминировало негативное отношение к его детищу. Невзирая на очевидные недостатки, Паскалина стала сенсацией, сначала она демонстрировалась в рабочем кабинете Паскаля, а затем отец и сын представили машину парижской знати и королевскому двору. Они развернули активную рекламную и деловую компанию, но большого успеха не добились. Машина не нашла спроса, поскольку для людей, связанных с бизнесом, ее приобретение оказалось экономически неоправданным, а имеющие средства аристократы сами свои деньги не считали. В итоге было продано порядка дюжины Паскалин.
В целом к Паскалине судьба отнеслась более благожелательно, чем к другим историческим счетным инструментам – из примерно 50 изготовленных образцов до нашего времени дошло целых восемь. Этому способствовало общественное положение ученого, его близость к королевскому двору, где он в 1645 году получил лицензию на исключительное право производства и продажи счетных машин (своего рода предшественница нынешних патентов). Конечно же, сохранности способствовали небольшие габариты и конструкция сумматора, он представлял собой металлическую коробку размером 36х13х8 см. Стоимость машины составляла примерно 100 ливров, рационально ли ее применение, если это сумма равна годовому бюджету семьи обеспеченного горожанина? Рынка счетных машин еще не было, большая часть из изготовленных машин пошла на дары, преподнесенные европейским королям и королевам в расчете на милость с их стороны.
Машина Перро
Биография создателя Abaque Rhabdologique заслуживает особого внимания. Клод Перро выходец из чрезвычайно состоятельной парижской семьи, он и все его три брата преуспели в жизни, более всех известен младший Шарль, автор нескольких, в том числе серьезных произведений, но обрел он всемирную славу известными всем «Сказками матушки Гусыни» (Золушка, Кот в сапогах, Красная Шапочка, Мальчик-с-пальчик и еще четыре.) Были ли они детскими? Современным детям читают адаптированные версии этих сказок, в оригинале же они чудовищно жестоки и назидательны. Сказки неоднократно переводили на русский и другие языки, насчитывается множество версий, от одной к другой они теряли брутальность и приобретали нынешнее умильное содержание. Впрочем, в этом нет ничего необычного, если мы возьмем русские сказки из классического трехтомника Афанасьева, то убедимся – они совершенно непригодны для детей.
Клод Перро обладал разносторонними способностями и получил прекрасное образование, по окончании университета с дипломом врача почти 20 лет он посвятил медицине, но вдруг неожиданно нашел себя в архитектуре и стал маститым архитектором. На его счету несколько известных парижских сооружений, по большей части не сохранившихся, исключение составляет один спроектированных им фасадов Лувра. В этот период увлечения архитектурой, продолжавшийся с 1665 по 1680 год, он изобрел свой Абак, более точная дата неизвестна.
Его описание появилось только после смерти автора в 1700 году, в небольшой 22-х страничной книжке наряду с описаниями других изобретенных им устройств, в том числе двух машин для подъема и перемещения грузов, водяных часов с маятником и приспособления для управления зеркалом в телескопе.
В оригинале Abaque Rhabdologique представлял собой удлиненную металлическую пластину размером 30x12x0,7 см и весом чуть больше килограмма, способную считать до 10 миллионов. На лицевой стороне есть «устройство ввода» – семь прорезей по которым с помощью стержня перемещаются узкие пластинки с выгравированными на них цифрами двух цветов, скажем красного и черного, и два ряда окошек, верхнее для сложения, нижнее для вычитания, в них виден сначала первый введенный операнд, а затем результат. Работа с устройством начинается с ввода первого разряда первого операнда, затем вводятся все остальные. Сложение осуществляется движением линеек вверх поразрядно, далее точно также после вводится второй операнд и таким образом выполняется суммирование в разряде, вычитании отличается движением линеек вниз. Если возникает необходимость в переносе или займе, в окошке результата появляется цифра красного цвета, указывающая на то, что нужно вручную сделать увеличение или уменьшение в старшем разряде. Подробнее об абаке Перро в 11 главе.
Машина Лейбница
Готфрид Вильгельм фон Лейбниц признан одним из величайших полиматов своего времени, предметом его интереса были несколько наук: математика, логика, механика, геология, теология, философия, история, лингвистика и другие. Однако из них всех приоритет он отдавал математике, где достиг абсолютного превосходства, стал чрезвычайно честолюбив, не терпел конкурентов. О Лейбнице как о математике известно очень многое, в том числе и то, что у него есть исследования, напрямую относящиеся к современной информатике. Лейбниц одним из первых европейцев исследовал двоичные числа, он считал их своим открытием, хотя за полторы тысячи лет до этого двоичная система была известна в Индии и Китае. Но не только логика для него была важна, как человек своего времени Лейбниц придавал двоичной записи еще и религиозно-мистическое значение. Семерка в виде 111 представлялась ему символом Троицы, он еще как-то связывал эту запись с семью днями творения. Однако в других рассуждениях Лейбниц был более рационален, он даже приблизился к булевой двоичной логике, соотнося значения «1» и «0» с ответами «да» и «нет».
Наиболее известна многолетняя ожесточенная полемикам Лейбница с Ньютоном, предметом спора оставался приоритет в области дифференциального исчисления. Дискуссия вовлекла в свою орбиту почти всех математиков конца XVII – начала XVIII века. Письма служили в ту пору единственным способом доведения до сведения общественности своих результатов, поскольку научных журналов или каких-то иных методов закрепления авторского права в науке не было. Писавшие себя не сдерживали, не случайно происходившее называют «золотым веком диспутов о приоритете в стиле метания грязью». Один показательный пример, Лейбниц 1 февраля 1673 года на заседании Лондонского королевского общества продемонстрировал свою вычислительную машину. Роберт Гук, известный как яростный антагонист Ньютона, исследовал прибор и в отсутствие Лейбница выступил с нелицеприятной критикой машины немецкого ученого, заявив, что он мог бы сделать куда более простую модель. Позже, узнавший об этом Лейбниц, в ответ на этот выпад сформулировал принципы корректного научного поведения.
Библиография трудов Лейбница огромна, многие его рукописи до сих пор не опубликованы, а письма не изучены. На этом фоне машина, о которой идет речь, отнюдь не самое важное в научном наследии Лейбница, не будь ее, историческое значение этой фигуры не изменилось бы. Складывается впечатление, что Лейбницем воспользовались люди, реставрировавшие машину, они явно хотели сыграть на имени великого ученого, наделив машину тем, чего в ней не было и придав ей большее значение, чем она того заслуживает. И надо признать им это великолепно удалось, придуманная ими история машины Лейбница оказалось общепризнанной, а подлинная осталась за кадром. На самом деле ситуация намного сложнее, чем ее обычно представляют, это стало ясно совсем недавно, уже XXI веке были опубликованы исследования альтернативной направленности, обнаруживающие неточности канонизированной версии. В этих исследованиях отмечается, что в конце XIX века усилиями группы энтузиастов произошло явление, которое называют «преобразование истории» (transmission history), по-русски можно сказать точнее – фальсификация истории. Такого рода стремление заменить объективную историю желаемой отнюдь не редкость, обычно оно случается, когда появляются мощные силы, заинтересованные в более выгодной им трактовке прошлого. В наше время за примерами такого рода далеко ходить не приходится.
Из навязанной трактовки следует, что Лейбниц сделал важнейший шаг в эволюции механических счетных машин – утверждается, что он изобрел ступенчатую шестерню (step reckoner, или, как его чаще называют, Leibniz wheel), хотя нет каких-либо документов, достоверно подтверждающих этот факт, ни одного рисунка, но эта версия без критики была принята общественностью под давлением груза научного авторитета Лейбница. Для большинства естественно – раз он так велик и так много сделал, то мог сделать и эту мелочь. Вплоть до последних лет никто не ставил роль Лейбница в этом узком вопросе под сомнение.
Действительно шестерня, названная именем Лейбница, наряду с колесом с переменным числом зубцов (pin wheel), о которой речь пойдет ниже, стала фундаментальной основой для огромного числа механических счетных машин вплоть до 70-х годов XX века. Вопрос в том, кто ее изобрел? Кажущаяся нам более верной альтернативная версия строится на том, что идея витала в воздухе, так бывает со многими изобретении, наступает момент и кто-то патентует ее и оказывается первым. В данном случае внедрил ступенчатую шестерню в 1820 году и запатентовал ее француз Шарль Томас (Тома), а имя Лейбница к ней прицепили лишь в 1879 более чем через полвека известные своим ревностным отношением к делу борцы за приоритет всего немецкого. Их опыт доказательства несуществующего был использован в СССР в годы сталинского режима. Культ Лейбница создавался по двум причинам. Первая – политическая, после объединения Германии в 1871 году немецкие историки активно принялись восстановлением «исторической правды», нужной им для укрепления позиции науки в зарождающейся новой государственности. Вторая – чисто практическая, в эти годы немецкие промышленники стремились занять лидирующие позиции в деле индустриализации производства арифмометров, что им удалось, спору нет, и такая трактовка истории была выгодна их бизнесу.
Однако вернемся к Лейбницу. Родившийся в 1646 году в профессорской семье с богатыми образовательными традициями, он рано лишился отца, оставившего ему хорошую библиотеку, его домашним образованием занималась мать, отличавшаяся редкими по тем временам либеральными взглядами. Под ее влиянием ребенок рос без строгих ограничений, он мог читать что угодно, увлекаться чем угодно, что нетипично для XVII века с его строгими нормативами.
Талант в сочетании со свободой способствовали раннему самостоятельному развитию и быстрому становлению как ученого. В 15 лет Лейбниц поступил в университет и в 20 его закончил, написав блестящую диссертацию. Юный возраст диссертанта вызвал сомнение в умах консервативно настроенных ученых, поэтому отнюдь не сразу, с преодолением ряда препятствий ему предложили место профессора, от которого, однако, Лейбниц отказался, предпочтя дипломатическую карьеру, приведшую его в Париж. Но на дипломатическом поприще Лейбниц к карьере не стремился, зато двухлетнее пребывание в тогдашней математической столице Европы позволило ему войти в круг наиболее компетентных коллег и стать одним их наиболее видных математиков того времени. Особое значение имело сотрудничество с Кристианом Гюйгенсом, умело сочетавшим математические знания с практическими исследованиями в области механики. В частности, Гюйгенс развил изобретение Хенлейна, который часовой спиралью заменил гири, Гюйгенс пошел дальше, сделав часы с вращающимся маятником, имевшие погрешность менее одной минуты в сутки, такая точность была достигнута впервые, им же была изобретена система «баланс-спираль», позволявшая создавать хронометры.
Что же касается машины, для начала изложим немецкую версию, ставшую канонической. Непосредственным стимулом к ее созданию оказалось описание Паскалины, обнаруженное Лейбницем в трактате «Мысли…» Блеза Паскаля, но он решил пойти «иным путем», ключевым элементом в его машине стала не имеющая аналогов изобретенная им ступенчатая шестерня, ее еще называют барабаном. Такая шестерня представляет собой цилиндр, внешняя поверхность которого разделена на 10 полос, на 9-и из них есть по зубцу, по длине они соответствуют цифрам от 1 до 9, а полоса без зубца соответствует 0. На выбор конструкции ушло минимальною время и уже в 1673 году Лейбниц смог продемонстрировать деревянный макет будущей «арифметической машины» Лондонскому королевскому обществу. Однако в ней таких шестерней не было, по сути, она осталась усовершенствованной Паскалиной. Технологические сложности в ту пору были так велики, что на переход от макета к работающей машине ушло почти полвека. За это время было создано несколько вариантов, известно о трех поколениях конструкции, на изготовление первого латунного прототипа ушло более 10 лет, с 1674 по 1685 год, на второй вариант немного меньше, он строился в период между 1686 и 1694 годами, создание третьего началось в 1690 и продолжалось почти 30 лет, он достраивался после смерти Лейбница. Последняя версия дошла до наших дней, сейчас она хранится в Национальной библиотеке земли Нижняя Саксония, в Ганновере. Путь в музей оказался непрост, после кончины Лейбница машину передали в Геттингенский университет, где она пролежала забытой до 1876 году, когда ее нашли при ремонте здания. Почти 20 лет она оставалась никому нужной пока в 1894 году на нее не обратил внимание Артур Буркхардт, владелец крупной компании, специализировавшейся на производстве арифмометров под торговой маркой Saxonia, где использовалась шестерня Лейбница. Он реставрировал машину и передал в нынешнее место хранения.
Увы, как бы убедительно эта канонизированная версия ни выглядела, при ближайшем рассмотрении история создания машины выглядит несколько иначе. Прежде всего Лейбниц утверждал, что вовсе не труд Паскаля стал импульсом к созданию машины. По его словам, пойдя по стопам своего старшего друга и наставника Гюйгенса, сочетавшего механику с математикой, в 1672 году в возрасте 26 лет Лейбниц самостоятельно пришел к мысли о создании счетной машины. Случившееся он описал в 1685 году: «Впервые увидев инструмент, автоматически сохранявший число сделанных шагов (описанный выше педометр Фернеля, вот оно начало!), я задумался о возможности распространить этот подход на арифметические операции. Я подумал, если можно механизировать последовательный счет, то почему нельзя подобным образом механизировать операции сложения, вычитания, умножения и деления. К этому я пришел самостоятельно, не зная о существовании машины Паскаля (!), о ней вообще мало кто знал, но потом я нашел упоминание о машине в его трудах и попросил моих друзей помочь мне познакомиться с ней поближе. От них я узнал, что Паскалина справляется только со сложением и вычитанием, но два других действия выполнять на ней затруднительно».
Под этим впечатлением Лейбниц пришел к выводу о необходимости создания более универсальной машины, способной выполнять все четыре действия, такие машины принято называть по-английски four-species calculating machine по аналогии с four-wheel drive, так именуют автомобили с приводом на все 4 колеса.
К тому же Лейбниц занялся проектированием машины, скажем так, из высших соображений, а совсем не практических, как в свое время Паскаль. Вот суть этих его рассуждений: «Если смертный человек может наделить латунную конструкции способностью считать, то значит подобным образом Бог способен наделить духом тела животных и человека и таким образом вдохнуть в них жизнь. Значит калькулятор служит еще одним доказательством существования Бога». Он наделял достаточно тривиальное устройство, состоящее из шестерен и рычагов, неким сакральным смыслом.
Многолетняя Работа Лейбница над машиной разделилась на два периода – первый с 1672 по 1678 год, когда был создан деревянно-металлический макет (его называют младшей машиной), тот самый который был показан в Лондоне. Он был действительно примитивен и вполне заслуженно не произвел серьезного впечатления на Гука, и второй период, с 1690 года до конца его жизни, когда создавалась, так называемая «старшая машина», нет точных данных чем он закончился. После кончины Лейбница работу над машиной продолжил сотрудничавший с ним механик Оливер, мы не знаем это имя или фамилия, но его деятельность завершилась не работоспособным макетом старшей машины.
Первый период достаточно хорошо изучен, есть даже защищенная в 2014 году диссертация, посвященная младшей машине. Из нее и из работ других историков следует, что сделанное Лейбницем за эти 6 лет им все же имеет конструктивное сходство с Паскалиной. Нашелся труд со ссылкой на признание Лейбница, где он говорил о решении построить усовершенствованный вариант, названный Leibnizian ?berpascaline, то есть Суперпаскалина Лейбница (Сравним, ?bermansch – гипотеза суперчеловека Ницше, доведенная до абсурда немецкими нацистами.).
Однако в сохранившихся бумагах упоминаний о проекте Суперпаскалины нет, как нет и никаких упоминаний о приписываемой Лейбницу ступенчатой шестерне. Скорее всего, ?berpascaline представляет собой ни что иное, как дальнейшее развитие Паскалины, но с некоторыми дополнениями и изменениями. Главное, что отличает Суперпаскалину от ее предшественницы – отказ от примитивных цевочных шестерней в пользу более совершенных, зубчатых. Отказ этот стал возможен благодаря тому, что за 30 лет, прошедших с момента изготовления первого экземпляра Паскалины, Гюйгенсом были созданы передачи с зубчатыми шестернями, они оказались намного совершеннее цевочных. То есть Суперпаскалина это практически та же Паскалина, но на зубчатых шестернях, она осталась сумматором, однако более работоспособным. Что же касается умножения и деления, то для решения этой задачи Лейбниц предполагал использовать дополнительный механизм наподобие редуктора с ременной передачей (mechanism with transmission cords), снабженного умножающими колесами (multiplicandae wheels). В нем он предполагал использовать колеса с переменных количеством извлекаемых зубцов (variably extractable teeth), а работу механизма переноса обеспечивали пятиконечные шестерни (pentagonal wheel). В описаниях действительно встречается упоминание о потенциальной возможности использования шестерен с неравными по длине зубцами (wheel with unequal teeth), но лишь как соображение о возможности. В них нет чертежей, где присутствует хотя бы одно изображение хорошо известных в последующем ступенчатых шестерен, тех самых, которые впоследствии стали называть Stepped Reckoner или шестерней Лейбница.
Вплоть до 1764 история машины Лейбница прерывается. В тот год к пятидесятилетию со дня его смерти руководством университета было принято решение реставрировать то, что сохранилось от нее. Однако описаний немного, поэтому мастера из Геттингенского университета с поставленной задачей не справились, на этот раз наследие Лейбница было помещено на чердак, где благополучно пролежало более чем 100 лет под завалами рухнувшей крыши вплоть до его второго открытия 1879, когда начался ремонт здания. Момент для реинкарнации оказался на редкость удачен, после победоносных войн против Австрии, Дании и Франции под руководством Бисмарка в 1870-71 годах состоялось объединение Германии, оно сопровождалась разного рода действиями, нацеленными на возвеличивание немецкого духа, как тут не вспомнить Вагнера, Ницше и других великих германцев. Но искусства и философии оказалось недостаточно, потребовались представители других направлений, поэтому еще одним символом величия немецкого духа стала машина Лейбница, к тому же в ней нуждалось набирающее обороты немецкое точное машиностроение. Теперь можно было сказать, что оно не идет по стопам какого-то «лягушатника» Томаса, изобретшего арифмометр, а следует заветам своего немецкого гения Лейбница.
Инициатором повторного открытия машины Лейбница стал Рудольф Герке, профессор Технического университета в Ганновере, руководитель научной организации Deutscher Geometerverein, ставившей своей целью способствовать исследованиям посредством распространения научных и практического опыта. Начиная с 1880 года он написал ряд статей исторической и аналитической направленности, популяризирующих машину Лейбницащйщй В 1904 году университет передал машину в компанию Arthur Burkhardt Company с просьбой проанализировать ее устройство и реставрировать. Первоначальный ответ носил скептический характер, он гласил, что в целом устройство работоспособно, но механизм переноса не эффективен, поэтому оно может иметь ограниченное применение и использовано лишь для сложения и вычитания. Но в последующем, очевидно в интересах своего бизнеса, Буркхард смягчил свою критическую позицию и стал одним из главных пропонентов формирующегося культа Лейбница. К середине 20-годов процесс переписывания истории захватил широкие круги, в разных местах создавались «реплики» машины Лейбница, имеющие мало общего с оригиналом, а термин Stepped Reckoner превратился в ее синоним.
О том насколько переписанная история может вытеснить историческую правду можно судить по тому, что написал Стивен Вольфрам, автор системы компьютерной алгебры Mathematica и системы извлечения знаний WolframAlpha, в статье «Погружаясь в наследие Лейбница» (Dropping In on Gottfried Leibniz). В ней он утверждает, кстати, что на создание машины Лейбниц потратил около миллиона долларов по современному курсу. В одном месте мы встречаем: «… к сожалению Лейбницу не удалось сделать калькулятор надежным – далеко не всегда он выдавал правильный результат. Как и большинство подобных механизмов того времени калькулятор представлял собой лишь изрядно приукрашенный педометр». А через несколько абзацев: «Когда я посетил его архив – я не мог не спросить кураторов о том, что же случилось с этим калькулятором. «Хм, мы можем Вам показать его» – был ответ. Калькулятор стоял на одной из многочисленных полок в подвале и выглядел совершенно новым». Это был изготовленный с использованием современных технологий новодел.
Машина Полени
В отличие от Паскаля и Лейбница в русскоязычной литературе имя Джованни Полени, астронома, математика и изобретателя нескольких интересных машин практически не встречается. Джованни родился в 1683 году в знатной венецианской семье, его отец маркиз Джокопо Полени. Он учился в Падуанском университете, главном образовательном центре Венецианской республики, одном из старейших университетов, открытом в 1222 году. В 1709 году Полени для получения должности в университете, как это было принято в те годы, опубликовал свой первый тракт «Разное» (Miscellanea: de barometris et thermometris de machina quadem arithmetica