Приведём ещё одну небольшую историю об интеллектуальном анализе данных. Во время проведения Чемпионата Европы по футболу в июне 2012 года в Китайских ресурсах появилось много сообщений о том, что «пока мужчины смотрят футбол, женщины занимаются онлайн-шоппингом» [10]. Сообщалось, что, согласно данным Taobao по продажам, после открытия чемпионата Европы торговый оборот женского сегмента онлайн-шоппинга очевидным образом вырос, при этом «пиковое время онлайн-продаж сдвинулось на два часа позднее, переместившись на отрезок с 23 до 24 часов». Кроме того, в период между окончанием первого матча в 1:45 ночи и началом второго матча в 2:45 ночи возник ещё один пик онлайн-продаж, и торговый оборот увеличился более чем на 260 % по сравнению с торговым оборотом в тот же отрезок времени в период до начала кубка.
Логику, составившую основу этого явления, несложно понять. Во время футбольного матча мужчины полностью погружались в просмотр, оставляя жён (или подруг) и детей без внимания. Женщины, особенно замужние, могли испытывать подавленность, раздражение и разочарование. Каждый раз, когда вечером начинался матч, у каждой женщины в такой ситуации появлялся большой выбор: например, начать делать домашние дела, болтать с подругами, звонить родителям, заниматься онлайн-шоппингом. Её поведение характеризует неопределённость, и предсказать, что именно она в конечном итоге будет делать, сложно. Однако если мы суммируем данные о продажах нескольких электронных торговых площадок и проанализируем их, то увидим, что групповое поведение женщин демонстрирует закономерности, поддающиеся отслеживанию. С началом кубка стал расти объём товаров, купленных женщинами онлайн, среди них увеличилось, по сравнению с обычным временем, и количество товаров высокой ценовой категории, то есть клиентки наконец позволили себе те вещи, на которые в обычной жизни у них не поднималась рука. До наступления эпохи больших данных утверждение «пока мужчины смотрят футбол, женщины занимаются онлайн-шоппингом» так и осталось бы не более чем догадкой, которую невозможно ничем подтвердить. Теперь же, в эпоху больших данных, получить ей подтверждение невероятно просто, причём мы можем проанализировать даже то, какие особенности отличают купленные товары. Во время следующего чемпионата магазины могли давать уже более предметную рекламу, они смогли не только более точно сфокусировать рекламные объявления исходя из адресата рекламы, выбор продвигаемых в них товаров также стал более адресным. Когда догадка выросла в знание, знание создало прибыль.
Помимо описанного выше применения в коммерции всё более распространённым становится использование интеллектуального анализа данных для решения общественных проблем. В июне 2013 года появились сообщения, что некая девушка из Восточно-китайского педагогического университета получила смс от администрации университета следующего содержания: «Уважаемый студент, мы обнаружили, что в прошлом месяце ваши затраты на питание в столовой были сравнительно небольшими. Возможно, вы испытываете финансовые трудности?» [11] Происхождение этого заботливого сообщения также объясняется интеллектуальным отбором данных: в результате анализа данных о тратах, полученных с университетских карточек на питание, администрация обнаружила, что затраты девушки на каждый приём пищи оказались сниженными, что и вылилось в отправку приведённого выше участливого сообщения. Впоследствии, однако, обнаружилось, что была допущена прекрасная ошибка: в действительности девушка просто хотела похудеть. Можно подумать, что причина возникновения ошибки в том, что данные были недостаточно «большими». Особенность больших данных в том, что помимо «большого объёма» они также являются «многоисточниковыми». Если бы помимо карточек на питание были проанализированы другие вспомогательные источники данных, вывод, вероятно, был бы более точным.
Несмотря на расцвет интеллектуального анализа данных, в определённой степени он уже не является передовым и горячим направлением в рамках больших данных, на лидирующих позициях его сменило машинное обучение. Интенсивно развивающееся в настоящий момент машинное обучение также опирается на компьютерные алгоритмы, но его алгоритмы, по сравнению с алгоритмами, использующимися в data mining, вовсе не являются фиксированными, они содержат саморегулирующиеся параметры, то есть в процессе машинного обучения по мере увеличения количества выполненных вычислений и анализов данных параметры алгоритмов непрерывно саморегулируются, вследствие чего результат анализа данных и прогнозирования становится более точным. Кроме того, предлагая компьютеру большой объём данных, мы даём ему возможность, подобно человеку, путём обучения постепенно самосовершенствоваться, поэтому данная технология и получила название «машинное обучение».
Наравне с интеллектуальным анализом данных и машинным обучением очень зрелыми являются также технологии анализа и применения данных, сформировавшие при этом единую систему. Хранилища данных, интерактивная аналитическая обработка (OLAP), визуализация данных, анализ машинной памяти – всё это важные составные элементы данной системы, и в процессе развития технологий сбора и обработки данных они все сыграли важную роль[4 - Читатели, интересующиеся эволюцией технологий анализа данных, могут обратиться к четвёртой главе книги «Большие данные» («Прошлое и настоящее бизнес-аналитики»), написанной одним из составителей настоящего издания – Ту Цзыпэем [12].].
Оглядываясь на более чем полувековую историю информационного общества, отметим, что материальный базис феномена больших данных был заложен только благодаря непрекращающемуся уменьшению размеров транзисторов и снижению их себестоимости, в результате чего у людей появилась возможность создать колоссальное, подобное огромному литому сосуду, хранилище для огромного массива данных. Технология же интеллектуального анализа данных, расцвет которой начался в 1989 году, сопоставима с технологией перегонки сырой нефти в готовый продукт: она является ключом к тому, чтобы большие данные произвели «большую ценность», без этой технологии, насколько огромен бы ни был массив данных, мы могли бы только «глядеть на нефть и бессильно вздыхать». Появившиеся в 2004 году социальные медиа, в свою очередь, сделали каждого из нас потенциальным создателем данных, который вносит свою лепту в наполнение отлитого вследствие действия закона Мура «сосуд», что и является главным фактором формирования «большого объёма». Схематично совокупность описанных факторов показана на рисунке 1.7.
Рисунок 1.7. Три основных формирующих элемента больших данных
Проанализировав статичное понятие «большие данные» и формирующие их динамичные элементы, мы можем более ясно представить особенности этого явления, а также раскрыть его и дать ему определение исходя из разных точек зрения, как это показано на рисунке 1.8.
Рисунок 1.8. Понятие «большие данные» и характеризующие его факторы
Как мы уже говорили выше, в настоящее время 75 % производимых человеком данных – это данные неструктурированные, и именно в форме неструктурированных данных воплощаются крупные массивы зарегистрированных данных. Если мы хотим обнаружить ценность крупных массивов зарегистрированных данных и неструктурированных данных, главный способ обработки их в настоящее время – это всё же преобразование их в строго структурированные, то есть традиционные малые данные. Поэтому, по мнению автора, ценность больших данных главным образом заключается в малых данных и структурированных данных, а их объёмность – прежде всего в существующих в настоящее время крупных массивах зарегистрированных данных и в неструктурированных данных.
Подъём больших данных заставил учёных всего мира строить предположения и гипотезы о том, какое влияние эта «новая волна», вызванная развитием информационных технологий, принесёт человеческому обществу и в каком направлении она поведёт Китай и мир в целом. В следующих главах мы попробуем ответить на эти вопросы применительно к нескольким областям.
ГЛАВА 2. ЦИФРОВОЕ УПРАВЛЕНИЕ: ИСПОЛЬЗОВАНИЕ БОЛЬШИХ ДАННЫХ ДЛЯ ПОВЫШЕНИЯ УРОВНЯ ГОСУДАРСТВЕННОГО И МУНИЦИПАЛЬНОГО АДМИНИСТРИРОВАНИЯ И ГОСУДАРСТВЕННЫХ УСЛУГ
Необходимо построить полноценный механизм, с помощью которого большие данные будут содействовать наукоёмкости процессов принятия решений и социального управления и внедрению инноваций в модели государственного и муниципального администрирования и социального управления, чтобы тем самым достичь научной обоснованности принимаемых органами управления решений, точности социального управления и высокой эффективности государственных услуг.
Высказывание Председателя Си Цзиньпина во времявторой коллективной учебной сессии Политбюро ЦККПК
До 2016 года жителям Чжэцзяна для оформления регистрации купли-продажи вторичного жилья требовалось принести отдельные пакеты документов в три инстанции: министерство земельных и природных ресурсов, министерство жилищного и городского строительства и налоговую службу, – после чего самого оформления следовало ждать ещё какое-то время. Теперь же достаточно обратиться в одно окно с одним пакетом документов, и в течение часа процедура будет полностью выполнена. Оформление свидетельства о праве собственности на недвижимое имущество изначально требовало пятнадцати шагов, для совершения многих из которых нужно было стоять в очередях. На сегодняшний день, благодаря реализации принципа «один номер очереди – получение услуги в одном окне» [14], прежние пятнадцать шагов сведены к трём. Проведённая в Чжэцзяне реформа по «минимизации количества обязательных посещений госучреждений до одного» сделала жизнь обычных людей по-настоящему удобной и приятной.
Сущность реформы по «минимизации количества обязательных посещений госучреждений до одного» состояла не просто в том, чтобы физически свести в одно окна многочисленных государственных и муниципальных учреждений, а в однократной, направленной внутрь «революции» самих этих учреждений. Этот процесс был обеспечен в первую очередь реструктуризацией учреждений и реорганизацией административных процессов, а его ключевыми звеньями стали преодоление обособленности данных и совершенствование механизмов управления данными.
Тем не менее реформа по «минимизации количества обязательных посещений госучреждений до одного» – это всего лишь отправная, но никак не конечная точка в реформировании системы государственных услуг. Существует ещё огромное число направлений для развития той помощи, которую большие данные могут дать в сфере модернизации системы государственного управления и возможностей управления и удовлетворения с каждым днём возрастающей потребности людей в лучшей жизни.
2.1. От «ухода от причудливых справок» до «ухода от справок»
Ещё не так давно СМИ пестрели сообщениями о «причудливых справках», «замкнутом круге справок» и «дублирующих справках». Например, некоторым гражданам при оформлении наследства на недвижимость требовалось предоставить свидетельство о смерти умершего родственника, а некоторым пожилым людям для получения пенсии приходилось документально подтверждать, что они ещё живы. Премьер Государственного совета КНР Ли Кэцян выступил с критикой этого явления на собрании членов Постоянного комитета Госсовета в мае 2015 года. Если в реальности вся подобная информация о жителях страны имеется в распоряжении государства, почему для того, чтобы люди могли получить какую-либо услугу в государственных и муниципальных учреждениях, им нужно самим ходить по всем инстанциям и собирать соответствующие удостоверяющие документы?
Феномен «причудливых справок» объясняется отсутствием совместного межведомственного и межмуниципального доступа к данным, имевшимся в распоряжении части учреждений страны. Раз данные не могли «бегать по делам», делать это приходилось людям и организациям, а сама ситуация, ко всему прочему, оставляла лазейки для фальсификации справок и документов. Наступление эпохи Интернета и больших данных дало решающий ключ для решения этой проблемы.
В 2019 году городском округе Цзиньхуа провинции Чжэцзян, первом среди городских округов страны, развернули работу по созданию «города без справок»: было объявлено, что муниципальные ведомства и общественные учреждения на всей территории округа не должны требовать от граждан и организаций никаких справок или свидетельств, выпущенных каким-либо третьим полномочным органом. Это решение местного правительства образно представлено на рисунке 2.1. Отрадные результаты были получены всего за несколько месяцев ведения работы по созданию в Цзинхуа «города без справок». Была полностью упразднена необходимость предоставлять 18 типов справок и свидетельств, касающихся операций по фонду жилищных сбережений, в частности справка о доходах сотрудника, выписка о жилищном положении, документы, подтверждающие прямое родство того, кто претендует на получение накопительного фонда, и участника фонда, и требующееся в соответствии с политикой льгот на получение ипотечного кредита высококвалифицированными специалистами свидетельство с места работы, подтверждающее соответствующую квалификацию. Таким образом на территории всего округа было реализовано «не требующее справок» получение услуг по фонду жилищных сбережений. Прежде граждане, имеющие иную регистрацию, оформляя в Цзиньхуа разрешение на проживание, должны были сначала получить в министерстве социального обеспечения выписку, удостоверяющую уплату социального страхования за период более полугода, затем с этой выпиской, удостоверением личности и контрактом на аренду жилья прийти в полицейский участок, чтобы подать заявление на оформление разрешения. А сейчас, благодаря совместному доступу к данным, работник учреждения может напрямую запросить информацию о социальном страховании, и от заявителя не требуется никаких дополнительных справок [15].
Рисунок 2.1. Создание «города без справок» (Го Дэсинь/Жэньминь Тупянь)
Реформа по созданию «города без справок» представляет собой полезную попытку сделать государственные услуги более ориентированными на людей, однако местные ведомства не имели полномочий выдавать свидетельства и справки, которые должны оформляться ведомствами других районов. Так, во многих профессиях для осуществления практической деятельности требуется наличие «справки об отсутствии судимости», однако органы общественной безопасности какой-либо местности, оформляя подобную справку, могут удостоверить лишь то, что записи о судимости отсутствуют на подведомственной им территории, соответственно, приезжие служащие вынуждены за такой справкой ехать в место своей регистрации. Сколько же людям пришлось совершить напрасных поездок из-за того, что данные не умеют «бегать» между муниципалитетами?
«Оседлав» разросшийся до масштабов общегосударственной стратегии восточный ветер интеграционного развития региона дельты Янцзы, идёт ускоренное продвижение совместного межмуниципального и межведомственного использования данных правительственных учреждений всех провинций (районных и городских округов) региона. 24 января 2018 года на первой сессии комитета 13-го съезда Народного политического консультативного совета Шанхая лидеры Шанхайского городского комитета партии, обсуждая стимулирование интегративного развития региона дельты Янцзы с позиций подхода, осуществления и ближайших действий, обратили внимание на то, что в регионе необходимо усилить дорожную и информационную сети, а также продвигать реализацию совместного использования данных и предоставления открытого доступа к ним [16]. 11 июня того же года на совместной пресс-конференции с участием «Цзефан жибао», «Вэньхуэй бао» и других СМИ лидеры Шанхайского горкома предложили план по созданию «единой базы данных», подразумевающий совместное строительство регионального центра хранения и обработки данных и унификацию форматов данных, их спецификации, каталогов и интерфейсов, чтобы тем самым сделать источники данных более эффективными в использовании. С одной стороны, такой план направлен на скорейшее содействие созданию исходной базы данных, чтобы в соответствии с единым стандартом ввести в неё государственные, отраслевые и социальные данные разных муниципалитетов. С другой стороны, на осуществление деятельности с опорой на единую платформу для совместного использования данных, их межведомственное и межрайонное использование [17].
В эпоху больших данных конечная цель и идеальное состояние, на которые направлены реформы организационной структуры муниципального управления и реорганизация административных процессов, состоит в создании единого правительства. Упразднение «причудливых справок», «замкнутых кругов справок» и «дублирующих справок» является первым шагом на пути к единому правительству, в котором административные цели и методы ведомств разных районов не только не противоречат друг другу, но и способны друг друга усиливать. Отдав приоритет нуждам граждан, разные ведомства с помощью разработки единой структуры и процедуры, единого финансового контроля, единой технической поддержки и культуры взаимного доверия и ответственности сформируют одно «соединённое без швов» правительство.
К моменту, когда это будет реализовано, простым людям не нужно будет разбираться в разграничении обязанностей между ведомствами, которое даже служащие самих ведомств не всегда могут чётко обозначить; людям также не нужно будет выяснять, как открываются двери в то или иное учреждение, кто его руководитель, к кому лучше обратиться по тому или иному вопросу. И даже зал обслуживания людям не нужно будет посещать. Чтобы без суеты и напряжения получить ту или иную услугу, достаточно будет выполнить несколько действий в телефоне либо пройтись до местной общины. Как и писали учёные Сян Цзин и Ян Гуаньяо, «электронные государственные услуги только тогда смогут принести гражданам максимальную пользу и стать по-настоящему ценными, если смогут экономить время и силы, которые граждане вынуждены тратить при взаимодействии с госучреждениями при подаче заявлений на оказание каких бы то ни было услуг, если будет осуществлено видение граждан о спокойной жизни, состоящее в том, чтобы “не тревожиться ни о мелочах, ни о важных делах”».
2.2. Данные «12345» делают города лучше
В последние несколько лет горячие линии государственных служб, представленные, например, линией «12345», пережив продолжавшиеся много лет объединение и стандартизацию, постепенно становятся важным каналом, с помощью которого широкие массы получают консультации, подают жалобы и получают услуги. Ещё более важным является то, что огромные массивы информации, накопленные горячими линиями государственных служб разных районов, характеризуются большим объёмом, высокой достоверностью, обширной покрывающей площадью, значительной временной эффективностью и другими преимуществами, благодаря чему они смогли помочь правительственным ведомствам лучше понять требования общественности и существующие в муниципальном управлении проблемы и тем самым усилить точность предлагаемых услуг, а также оказали мощную поддержку в сфере повышения уровня управления внутри самих ведомств [18].
По словам руководителя центра по исследованию цифрового управления Чжуншаньского университета Чжэн Юэпина, благодаря горячей линии муниципальных услуг Гуанчжоу на основании анализа большого массива данных о запросах и жалобах со стороны населения за прошедшие несколько лет была сделана предварительная оценка телефонной нагрузки в ближайшие три года, что позволило лучше рассчитать потребности в человеческих ресурсах, рабочих площадках, определить их себестоимость и привести работу в систему, благодаря чему повысилась эффективность распределения ресурсов. Собранные данные также используются для проведения оценки результатов работы сотрудников горячей линии, что обеспечивает постоянное улучшение качества обслуживания. В то же время, благодаря взаимодействию с министерством охраны окружающей среды и органами муниципального управления в сфере использования данных, горячая линия помогает этим ведомствам решать вопросы, касающиеся, например, загрязнения окружающей среды, шумовых помех и незаконного строительства. В городском округе Чжуншань был проведён анализ собранных государственной горячей линией данных, связанных с защитой прав потребителей, что позволило лучше проанализировать существующие в разных микрорайонах, уличных комитетах и торговых центрах проблемы, касающиеся поддельных и низкокачественных продуктов и послепродажного обслуживания, а также выявить новые тенденции, появившиеся в последние годы. Анализ всех этих данных может помочь отделу контроля и управления рынками точно выполнять дифференциацию и категоризацию проблем и тем самым повышать адресность и эффективность контроля и управления.
Дальнейшим шагом станет расширение сферы применения данных горячих линий и их выход за пределы внутриведомственного использования: эти данные также могут быть открыты обществу, чтобы различные его субъекты имели возможность совместно определять ценность ставшей доступной новой информации. В этом плане в других странах есть большой опыт, достойный того, чтобы мы его изучали и перенимали. Например, в Нью-Йорке с жалобой на обнаруженные в парке или на пешеходной дорожке собачьи экскременты можно обратиться на горячую линию: 311. После того, как собранные данные стали доступны общественности, учёные, занимающие наукой о данных, провели комплексное исследование, в котором проанализировали данные жалоб о собачьих экскрементах, данные о велосипедных дорожках Нью-Йорка, данные о расположении велосипедных стоянок, данные о лицензиях на создание уличных ресторанов, а также данные о всеобщем обследовании деревьев на улицах города, и выявили наиболее пригодные для прогулок в летнее время места Нью-Йорка.
В настоящее время горячие линии государственных служб движутся к новой фазе – интеллектуализации. Горячие линии государственных услуг в эпоху больших данных и искусственного интеллекта – это уже не просто колл-центры, для городов они, скорее, стали центрами хранения и обработки данных и смарт-платформами по предоставлению услуг: с помощью интеллектуального анализа больших данных горячих линий можно эффективно идентифицировать общественные потребности и существующие в городах проблемы, чтобы тем самым поддержать движение правительственных стратегий и городского управления в сторону научного подхода и, соответственно, точности [19]. Одновременно с этим открытие подобных горячих линий предоставило ведомствам, предприятиям и жителям города новые возможности для совместного решения существующих общественных проблем, таким образом каждый житель города способен сделать нашу жизнь в городах лучше.
2.3. Как большие данные распознают подлинные «города-призраки»
В 2010 году в одном из новостных сообщений новый район Кангбаши городского округа Ордос автономного района Внутренняя Монголия был назван «городом-призраком». После этого новости, в которых случаи избыточного строительства в разных местах Китая назывались «городами-призраками», следовали одна за другой. Однако встаёт вопрос, являются ли подобные сообщения истинными? Может быть, они частично преувеличены или не соответствуют действительности? Даже имея доказательства, такое сообщение сложно опровергнуть. Например, одни СМИ сообщали о серьёзной ситуации с пустующим жильём в городском уезде Жушань провинции Шаньдун, но при этом есть сообщения и о росте населения Жушаня, что снимает с него ярлык «города-призрака». Кроме того, в некоторых городах из-за стремительного развития туристической индустрии в последние годы было построено множество жилых комплексов для удовлетворения потребностей приезжающих в отпуск людей. В пик туристического сезона количество проживающих в этих комплексах увеличивается, в другие сезоны соответствующим образом уменьшается, превращая их в так называемые «города-призраки». И в действительности описанный феномен спада и подъёма людского потока является нормальным. И всё-таки сказанное вызывает вопрос: каков же настоящий «город-призрак»?
Команда одного из занимающихся наукой о данных китайского учёного – У Хайшаня, проанализировав данные о местонахождении смартфонов, впервые в Китае провела количественное исследование «городов-призраков». Учёные вели мониторинг двадцати районов с относительно высокой долей пустующего городского жилья и смогли дифференцировать застройку, пустующую по причине туристической сезонности, и настоящие «города-призраки». Как показало исследование, коэффициент заселения в некоторых «раскрученных СМИ» как типичные «города-призраки» новых городских районах очевидным образом растёт, тогда как в некоторых старых городских районах, а также модифицированных ресурсно-ориентированных городах была обнаружена пустующая жилая застройка. Так, самый первый «город-призрак», о котором сообщали СМИ, – новый район Кангбаши городского округа Ордос – «призраком» уже не является, чего нельзя сказать о старых городских районах Ордоса, отток населения в которых является более значительным. Похожая ситуация возникла в Тяньцзине. Очень многие считали, что здесь лишь один «город-призрак» – новый район Биньхай, однако анализ данных показал относительно серьёзную ситуацию с пустующим жильём в районе Цзиньнань, располагающемся, что удивительно, далеко не на окраине и имеющем жилую застройку рядом с учебными заведениями и станцией метро. Кроме того, довольно много случаев пустующего жилья обнаружено в таких модифицированных ресурсно-ориентированных городах, как Дунъин в провинции Шаньдун и район Хорчин городского округа Тунляо автономного района Внутренняя Монголия [20]. Известный учёный в области искусственного интеллекта Эндрю Ын прокомментировал это следующим образом: «Пришло время дать возможность машинам планировать городскую застройку на основе данных».
Премьер Государственного совета КНР Ли Кэцян отметил, что «в продвижении урбанизации центральной проблемой является урбанизация населения, а ключевой – повышение качества урбанизации, целью же является принести пользу простым людям и обеспечить крестьян»[5 - Источник – речь премьера Государственного совета КНР Ли Кэцяна, произнесённая им 15 января 2013 г. во время проводимой им инспекции Исследовательского института Государственного департамента продовольствия.]. Человек является субъектом всей общественно-экономической деятельности, стимулирование урбанизации нового типа не должно быть «спортом по созданию городов», её отправная и конечная точки должны быть ориентированы на человека. Описанный выше основанный на мобильном Интернете и технологии обработки больших данных анализ даёт новые идеи для ориентированных на человека исследований.
Благодаря большим данным Правительство при принятии стратегических решений ориентируется теперь в большей степени на данные, а не на опыт. Заглядывая в будущее, можем сказать, что системный сбор объективных данных, всестороннее использование технологий цифрового корреляционного анализа, математического моделирования, виртуальной реальности, искусственного интеллекта, проведение модульного анализа и имитационного моделирования политического курса даст более точные основания для его выработки и принятия решений, обеспечит более полное и надёжное отслеживание его осуществления в реальном времени, предоставит более научно обоснованные и комплексные методы для оценки результатов его реализации. Большие данные обладают огромным потенциалом для применения в самых разных сферах: будь то проведение динамического контроля с предварительным оповещением по безопасности в отношении населения, транспорта, ресурсов и окружающей среды или предоставление поддержки данных для стратегического планирования моделей развития макроэкономической сферы.
Предварительным условием для проведения корреляционного анализа и применения данных является совместный межведомственный доступ к данным и управление данными. Разделение и обособление данных разных ведомств приведёт, с одной стороны, к невозможности применить к ним методы анализа больших данных и, соответственно, реализовать их суммарный потенциал, с другой стороны, будет неблагоприятным для интенсивного управления и снижения себестоимости и, кроме того, может легко привести к возникновению серьёзных угроз безопасности. Активное продвижение совместного согласованного использования информационной системы государственных услуг, которому в последние годы активно содействовал Госсовет, принесло положительные результаты, произошло заметное улучшение в отношении «обособленного управления, сегментации, использования разных, несинхронизированных компьютерных систем, обособленности информации».
Тем не менее для того чтобы по-настоящему осуществить совместный согласованный доступ ведомств к данным, необходимо выйти за рамки подхода «совместный доступ ради совместного доступа», необходимо подняться на уровень управления данными, чтобы детально рассмотреть, распланировать и привести в движение работу по организации совместного доступа к данным. Во-первых, необходимо содействовать созданию законодательных и нормативных актов в отношении управления данными, создать благоприятную среду для «управления данными в соответствии с законом». Во-вторых, необходимо выстроить полноценную структуру организации управления данными, усовершенствовать механизм контроля управления данными. В-третьих, требуется укреплять систему управления ресурсами данных и всесторонне повышать возможности управления данными. Это касается качества данных, их безопасности, стандартов, структуры данных, управления метаданными и полного жизненного цикла данных. В-четвёртых, следует ускорить темпы организации совместного и открытого доступа к данным, создать экосистему использования данных и привлекать общество к согласованному использованию открытых данных, исходящему из реальных нужд городов и сфер применения в них, создать общественную и экономическую ценность и сформировать позитивный фидбэк, предпринимать дальнейшие действия для продвижения муниципального управления данными, предоставления совместного и открытого доступа к ним, чтобы тем самым создать динамично-циклическую экосистему открытых данных [21].
2.4. Как «железная клетка данных» остановила произвол полномочий
«Платформа отслеживания больших данных превратилась в не подверженный коррупции эффективный инструмент», «ослабли ли убеждения, «расслабился» ли образ мысли, упала ли заинтересованность на самую нижнюю ступень, стала небрежной работа… Признаки всего этого можно найти с помощью больших данных». В начале мая 2019 года, когда в сети стала циркулировать новость о том, что «антикоррупционная система, основанная на больших данных, была закрыта из-за слишком высокой эффективности, которую показало её применение в отдалённых районах», ответственный за проект доктор наук Фан Цзиньюнь из Исследовательского института вычислительной техники Китайской академии наук вышел «из закулисья», чтобы опровергнуть сообщение как не соответствующее действительности. Пробное использование этой системы дисциплинарного мониторинга и контроля началось в уезде Маян провинции Хунань, на текущий момент она используется более чем в тридцати уездах (городских округах, районах) по всей стране [22].
«Если бы не эта система, мы бы, конечно, до сих пор и не знали о людях, которые столько лет присваивали чужие деньги, а теперь можно больше не бояться, что нас проведут!» Один крестьянин зарегистрировался в системе мониторинга фонда материального обеспечения и обнаружил, что он в 2014 году получил 8 000 юаней компенсации пострадавшим от стихийного бедствия, что отличалось от суммы, полученной им в реальности. Крестьянин оставил в системе жалобу. Когда её проверили соответствующие органы, выяснилось, что полагавшуюся крестьянину компенсацию оставил себе секретарь партийной ячейки деревни. Ещё один крестьянин проверил в терминале мониторинга фонда материального обеспечения пенсии членов своей семьи и, к удивлению своему, обнаружил, что его два года назад умершая мать продолжает регулярно получать деньги. Очень быстро обнаружилось, что чужую пенсию получал деревенский координатор социального обеспечения, и дело было передано в суд. И это не единичные случаи. После того как месячные траты медико-санитарной службы одного городского округа на покупку канцелярских товаров превысили 150 тысяч юаней, система автоматически создала предупреждение, повлекшее за собой расследование со стороны комиссии по проверке дисциплины. Выяснилось, что противоправные действия совершались руководителем службы, который по чекам на канцтовары проводил траты, сделанные на самом деле при покупке спиртного.
Для усиления мониторинга и контроля внутри государственных ведомств в Гуанчжоу создали так называемую «железную клетку данных». Контрольный комитет провинциальной комиссии по проверке дисциплины ввёл в систему десять моделей для сравнения данных государственных служащих, в том числе их персональную информацию, данные в отношении промышленной и коммерческой деятельности, данные о смертности, информацию в сфере жилищного фонда, информацию о транспортных средствах, анализ отклонений в лечении тяжёлых заболеваний и др. Одновременно с этим был открыт совместный доступ к данным органов гражданской администрации, к данным по управлению трудовыми ресурсами и социальному обеспечению, управлению жилищным и городским строительством, управлению в области санитарии, планирования семьи, иммиграционного управления. Сопоставление данных позволило быстро обнаружить проблемы и предпринять меры для их решения. Таким образом был реализован постоянный контроль за государственными служащими, вовлечёнными в работу над проектами по благосостоянию народа. Финансовое управление провинции создало динамичную систему мониторинга исполнения бюджета, в которую были заложены принципы мониторинга дисциплины, в частности предотвращение «денежных переводов баням, кортам для гольфа и другим особым получателям», прекращение «денежных переводов со служебных кредитных карт особым получателям», сигнализирование о «представительских расходах административных учреждений». В случае незаконного присвоения или расходования средств, выделяемых на так называемые «три типа служебных расходов», система может предотвратить их или своевременно остановить. С момента запуска системы были получены данные, позволившие предупредить и остановить нарушения, а также оповестить об уже совершённых нарушениях в 1 137 случаях, связанных с общей суммой в 15,584 миллиона юаней [23]. В феврале 2015 года премьер Государственного совета КНР Ли Кэцян посетил с инспекцией Пекинско-Гуйянский выставочный центр применения больших данных, где детально ознакомился с тем, как в Гуйяне используют персональные носимые видеорегистраторы и облачную платформу больших данных для мониторинга исполнения правоохранительных полномочий. По словам Ли Кэцяна, благодаря заключению правоохранительных полномочий в «железную клетку данных» недобросовестные рыночные действия становится невозможно скрыть: повсюду остаются следы действия полномочий, и это даёт прямое научное обоснование для принятия решений Правительством. Таким образом реализуется принцип: «Пока человек делает, облако вычисляет» [24].
Большие данные дали новые методы для усовершенствования внутреннего администрирования органов управления. Благодаря большим данным, облачным вычислениям и мобильному Интернету весь процесс осуществления властных полномочий стандартизован, оцифрован и на всех этапах оставляет прослеживаемые следы. Это в особенности справедливо для многих звеньев административно-исполнительных процессов, административных проверок и разрешений, нарушений закона и дисциплины: благодаря интеллектуальному анализу данных возможно своевременно обнаруживать и разрешать разного рода случаи преступного бездействия, нарушений порядка и коррупции. Таким образом был сделан переход от мониторинга, проводимого человеком, к мониторингу, осуществляемому данными, от мониторинга постфактум к мониторингу в процессе, от индивидуального мониторинга к комплексному – всё это в значительной мере сузило пространство для вымогательств со стороны полномочных лиц. В то же время помещение мониторинга на передний план благоприятно и для своевременного оповещения о тех случаях нарушений закона и дисциплины со стороны государственных служащих, когда «болезнь только начинается», и возможности их коррекции, позволяющей предотвратить накапливание и превращение небольших ошибок в крупные. Также это является одним из видов защиты для должностных лиц.
Стоит обратить внимание на то, что функционирование данных во внутреннем администрировании госучреждений не может существовать обособленно, по-настоящему раскрыть скрытый потенциал данных можно только при совмещении их использования с системным, организационным и культурным аспектами управления. Полностью разработанные перечни полномочий, ответственности и ограничений помогают достичь детализации, фиксации и цифровизации процесса осуществления властных полномочий и его звеньев. Создание безукоризненного механизма оценки рисков процесса осуществления властных полномочий позволяет при поддержке технологии своевременно предупреждать и обнаруживать случаи преступного недеяния и нарушения порядка. Сколь бы ни были продвинутыми технологии, в конечном итоге исполнение принадлежит человеку. Только по-настоящему укрепив исполнительную силу системы, мы можем вплотную соединить «железную клетку данных» и «железную клетку системы» и получить силу, превышающую простую сумму этих двух слагаемых.
2.5. “GovStore”: открытый доступ к данным и создание экосреды
Данные – это стратегический ресурс страны, это большой объём основополагающих, ключевых данных государства, сосредоточенный в руках органов управления. Государственные данные являются общественным ресурсом, и максимально открыть к ним доступ общества для полноценной совместной обработки и использования при условии сохранения государственной тайны, коммерческой тайны и неприкосновенности частной жизни имеет практическую значимость с точки зрения раскрытия потенциала данных, стимуляции энергии инновации, создания общественной ценности.
К 2016 году 106 стран среди 193 стран – участниц ООН предоставили каталоги открытых государственных данных, что вдвое больше, чем в 2014 году [25]. В Китае платформа открытых данных государственного уровня также находится в процессе интенсивного создания. А в Шанхае – городе, являющемся «авангардом политики реформ и открытости» и «пионером инноваций и развития» [26], работа по предоставлению открытого доступа к государственным данным, которая велась в последние несколько лет, уже принесла заметные результаты. В июне 2012 года начала свою работу первая в Китае платформа открытых данных – «Сеть доступа к данным муниципального правительства Шанхая» (общий вид сайта можно увидеть на рисунке 2.2). Во главе с канцелярией Правительства Шанхая и городской комиссией по информатизации в сфере экономики участниками платформы в пробном режиме стали девять ведомств, в том числе городское управление общественной безопасности, городское управление промышленно-торговой администрации и городской транспортный комитет. После своего запуска сайт получил немало откликов. За первый месяц работы его посещаемость достигла 350 тысяч человеко-раз. По состоянию на май 2019 года на сайте Шанхайской сети доступа к данным муниципального Правительства было открыто более 2 000 источников данных 45 разных правительственных учреждений, число посещений страницы превысило 1,7 миллиона. В рейтинге платформ провинциального уровня «Индекс открытых данных в Китае за 2019 год» Шанхайский сервис открытых данных занял первое место [27].
Основная цель предоставления открытого доступа к государственным данным состоит в стимулировании их использования. Одновременно с созданием и совершенствованием платформы открытых данных Шанхай усиленно продвигает социум-ориентированное использование открытых данных и культивирует экосистему открытых государственных данных. В результате возник Шанхайский чемпионат по созданию приложений с использованием открытых данных. Сокращённое название чемпионата SODA (Shanghai Open Data Apps) точно совпадает с написанием английского слова soda, содовая. «Большой объём тесно связанных с жизнью города данных, которые кроются в руках правительственных и общественных учреждений, напоминают газированную воду, закупоренную в стеклянной бутылке: она кажется спокойной, стабильной и беззвучной, но стоит открыть крышку, как в мгновение ока высвобождается неисчерпаемая энергия» [28].
На чемпионате SODA, который проводится без перерыва с 2015 года, открытые государственные данные помогают аккумулировать общественную мудрость и высвободить потенциал открытых данных. В ходе прежних турниров SODA многие правительственные ведомства сообща предоставили открытый доступ к большому массиву качественных данных, что привлекло множество участников, предоставивших креативные проекты, и дало отличные результаты.
В 2015 году главной темой SODA стал городской транспорт. Был предоставлен открытый доступ к десяти наборам данных: транспортным показателям улиц города, данным по работе метро, данным по использованию многофункциональных карт пассажиров, данным по общественному транспорту в Пудуне в режиме реального времени, данным по движению такси компании Цяншэн, состоянию качества воздуха, метеорологическим данным, данным о дорожных авариях, опорным съездам с автомагистралей и данным Sina Weibo. Общий объём опубликованных в машиночитаемой форме данных составлял около 1 терабайта, при этом большая часть наборов данных была опубликована в Китае впервые. Чемпионат был ориентирован на глобальный сбор решений по усовершенствованию городского сообщения, обеспечению удобства поездок горожан, созданию новых бизнес-моделей. В итоге было привлечено почти 3 000 участников, конкурсанты представили в общей сложности 505 креативных проектов, касающихся комплексного анализа движения транспорта, оптимизации общественного транспорта, планирования поездок, использования экологически чистых видов транспорта, финансовых (страховых) моделей в транспортной сфере. Проекты включали в себя приложения для планирования поездок, совместных поездок на такси («такси-шеринга»), оптимизации эксплуатации метро, организации умного пылеподавления, совместного использования велосипедов («велошеринга») и др.