А теперь рябь наконец добралась до Земли
. Бранчези на мгновение закрыла глаза. Если бы LIGO не модифицировали два года назад, эти возмущения, невероятно ослабленные за время путешествия, занявшего 130 миллионов лет, дошли бы до Земли и прошли бы никем не замеченные. Ничего нового ученые не узнали бы. В этот раз благодаря Бранчези и еще небольшой группе астрофизиков, астрономов и физиков, изучающих гравитационные волны, они были готовы к этой столь маловероятной встрече.
Она посмотрела на сыновей. Диего уже слышал от своих родителей множество историй о черных дырах, скоро его мама добавит еще несколько о нейтронных звездах. Бранчези знала, что если это наблюдение подтвердится, то слияние, теперь известное как GW170817, вполне может стать определяющим моментом в ее карьере, кульминацией ее десятилетних усилий по объединению исследователей из самых разных областей для совместной работы.
Любые приходящие из космоса сигналы могут быть “посланниками”. Например, от нашего Солнца исходит не только свет, но и непрекращающийся поток почти безмассовых частиц, так называемых нейтрино
. С помощью многоканальной астрономии удалось подтвердить всего три события, произошедшие за пределами нашего Млечного Пути. В 1987 году с использованием оптических телескопов и при участии нейтринных обсерваторий была обнаружена сверхновая. В 2018 году оптическим телескопам и детектору нейтрино IceCube в Антарктике удалось идентифицировать источник космических нейтрино
. Им оказался блазар – объект высокой светимости, связанный со сверхмассивной черной дырой в центре галактики, расположенной в четырех миллиардах световых лет от нас. Однако переломным моментом стало обнаружение и наблюдение в 2017 году гравитационно-волнового всплеска GW170817. Это и был проект, на который столько сил положила Бранчези. В этот раз физики зафиксировали проходящие через Землю пульсации пространства-времени и немедленно оповестили астрономов. Астрономы направили к источнику этих слабых пульсаций свои оптические, радио- и все другие возможные телескопы, предназначенные для приема электромагнитного излучения различных длин волн, чтобы зафиксировать весь спектр сигналов, иначе говоря, посланников космического катаклизма.
Очень важно, что это историческое столкновение и находящаяся в стадии становления многоканальная астрономия помогли ученым получить представление об устройстве и эволюции этих удивительно странных объектов нашей Вселенной – нейтронных звезд
.
Благодаря своей работе Бранчези уже в следующем году попала в список самых влиятельных людей 2018 года по версии журнала Time
.
Но даже до получения результатов, уже в Урбино, стоя в своем нагретом летним солнцем саду днем 17 августа 2017 года, она знала: это событие навсегда останется в науке будущего и в исторических книгах.
За одиннадцать миллиардов лет до открытия
Посмотрите как-нибудь ночью на полную Луну. Затем представьте себе, что вы поставили на ней ручкой точку, диаметр которой составляет менее 1 % от диаметра Луны. Поскольку поперечный размер Луны примерно 3476 километров, диаметр нарисованной точки будет около 20 километров. Это чуть меньше диаметра Чикаго, если представить себе, что этот город свернулся в плывущий в космосе шар. Средний размер нейтронной звезды именно такой.
Нейтронная звезда – это то, что осталось от звезды, масса которой изначально составляла от восьми до пятнадцати[2 - Верхняя граница массы предков нейтронных звезд пока известна плохо. Она может достигать и шестидесяти масс Солнца. – Прим. науч. ред.] масс Солнца. За миллионы лет ядерное топливо выгорает, и массивная материнская звезда постепенно умирает. Этот процесс заканчивается феерическим взрывом – вспышкой сверхновой. Можно ожидать, что в среднем в галактике размером с наш Млечный Путь гибель звезды происходит примерно раз в пятьдесят лет. В огромной пустой Вселенной нейтронная звезда могла бы показаться совсем незначительным объектом, если бы не ее невероятная плотность, превышающая плотность воды примерно в сто триллионов раз. В плотном объекте внутри очень малого объема зажато очень большое количество вещества. Нейтронная звезда – это самый плотный из известных нам объектов, состоящих из обычного вещества. Если к массивной нейтронной звезде добавить еще немного вещества или если две нейтронные звезды столкнутся, коллапс звезды продолжится, что приведет к образованию черной дыры. Диаметр нашего Солнца – порядка 1,4 миллиона километров, но его масса примерно равна массе крохотной нейтронной звезды, поперечный размер которой составляет всего 20 километров. Представьте себе вишенку на торте, которая весит миллиард тонн!
При такой безумной плотности эти таинственные зомби-звезды еще и носятся в пространстве, быстро вращаясь вокруг своей оси со скоростью как минимум один оборот в секунду. У некоторых нейтронных звезд вблизи магнитных полюсов формируются узконаправленные потоки электромагнитного излучения – джеты. Поскольку нейтронные звезды вращаются, их излучение в виде всплесков радиоволн можно обнаружить, когда один из джетов направлен в сторону Земли. Можно сказать, что быстро вращающаяся нейтронная звезда чем-то напоминает непрерывно светящий вращающийся маяк, тогда как кораблям в море, или в нашем случае астрономам, видны только отдельные вспышки. Такие нейтронные звезды называют пульсарами, и обычно видят именно их. Вспышки многих пульсаров столь регулярны, что недавно пульсары предложили использовать для независимой проверки атомных часов, определяющих международное атомное время
.
Астрономы считают, что, хотя пока удалось открыть около трех тысяч радиопульсаров, только в нашей Галактике их число может достигать ста миллионов
. И все же до сих пор мы знаем о них очень мало.
Правда, до того, как 17 августа 2017 года в 14 часов 41 минуту по местному времени Марика Бранчези в городе Урбино получила сообщение о слиянии нейтронных звезд в соседней галактике, мы знали о радиопульсарах еще меньше
. Наконец у человечества появился шанс лучше понять, что представляют собой эти странные объекты.
По-видимому, две нейтронные звезды, замеченные LIGO и Virgo, образовались около и миллиардов лет назад. Тогда Вселенная была еще молодой, ни Земли, ни Солнечной системы не существовало, а обычные звезды объединялись в скопления. Две звезды, каждая из которых была примерно в десять раз массивнее Солнца, умерли одна за другой. По космическим масштабам они находились не слишком далеко друг от друга, и их оставшиеся ядра массой чуть больше одной солнечной массы (массы Солнца) начали по спирали приближаться друг к другу под действием взаимного гравитационного притяжения. Этот танец предопределил их судьбу. Обращаясь вокруг общего центра масс, они сминали ткань пространства и времени, наподобие того, как оставляет вмятины шар для боулинга, катясь по натянутой простыне, которую держат за четыре угла. Деформация пространства-времени, вызванная нейтронными звездами, привела к появлению ряби – гравитационных волн, распространяющихся по Вселенной
.
За сто тридцать миллионов лет до открытия
Пока две нейтронные звезды двигались по спирали друг к другу, Вселенная эволюционировала и расширялась, образовывались новые галактики и рождались новые звезды. Около 130 миллионов лет назад эти нейтронные звезды подошли настолько близко друг к другу, что каждая из них стала причиной появления приливов и отливов на поверхности другой, вроде тех, за которые в земных океанах ответственна Луна. Эти приливные эффекты, растягивая и сжимая звезды, разрушали их.
Несколько позже произошла космическая катастрофа: нейтронные звезды наконец столкнулись и взорвались. Часть выброшенного при взрыве вещества не потеряла связь с тем, что сохранилось от этой пары, и из “мусора” вокруг остатка сверхновой образовался так называемый аккреционный диск. Это, в свою очередь, привело к формированию из вещества аккреционного диска мощной струи – джета, распространяющегося по Вселенной со скоростью, близкой к скорости света, и излучающего в рентгеновском, оптическом и радиодиапазонах. Кроме того, джет стал источником короткой и невероятно сильной вспышки гамма-излучения – наиболее мощного из известных электромагнитных событий.
Какой-то части выброшенной массы удалось преодолеть силу притяжения остатка сверхновой, сформировав очень горячее и быстро расширяющееся облако, напоминающее увеличивающийся в размере пончик. Это облако было настолько богато нейтронами, что запустилась реакция образования элементов тяжелее железа, таких как золото, серебро и платина. По оценкам астрономов, масса тяжелых элементов в этом облаке составляла примерно десять тысяч масс Земли. Только чистого золота там было 236 секстиллионов (то есть 236 и хвост из двадцати одного нуля) тонн, что равно сорока массам Земли. Радиоактивный распад всех этих тяжелых элементов генерирует свет – оптическое излучение, обусловленное радиоактивным послесвечением, которое называют “килоновая”
.
При слиянии двух нейтронных звезд плотность новообразованного тела резко увеличивается. Вероятнее всего, такая объединенная нейтронная звезда становится слишком массивной, чтобы продолжать существовать, она коллапсирует внутрь себя и образует черную дыру. Очень важно, что слияние значительно усиливает гравитационную рябь, которая была до столкновения. Гравитационные волны становятся невидимыми посланниками великого и ужасного соударения, и они, обладая энергией двухсот миллионов Солнц, со скоростью света разбегаются во всех направлениях.
Когда это все происходило, на Земле начинался меловой период и динозавры населяли материки и океаны. Только в августе 2017 года гравитационная рябь достигла нашего мира и прикоснулась к чувствительной аппаратуре LIGO и Virgo. В течение этих 130 миллионов лет гравитационные волны, двигающиеся, согласно предсказанию Эйнштейна, со скоростью света, то есть около 300 тысяч километров в секунду, стали существенно слабее. До нас дошли и другие сигналы этого космического события, а именно – свет и радиоволны, распространяющиеся с той же скоростью. Когда мы что-то видим в космосе, мы наблюдаем прошлое. Даже свету, идущему от Солнца, требуется восемь минут двадцать секунд, чтобы дойти до нас. Если Солнце внезапно исчезнет (хотя этого не должно случиться при нашей жизни), потребуются именно эти восемь минут, чтобы мы узнали о произошедшем событии.
Когда детекторы LIGO и Virgo зафиксировали гравитационную волну, они разослали автоматические уведомления. Эти уведомления получили несколько так называемых первых респондентов, работа которых состояла в оценке всех возможных кандидатов, отмеченных программой. Стало ясно, что получены сенсационные данные: сила сигнала указывала на два объекта, массы которых попадали в интервал, соответствующий массам нейтронных звезд – другими словами, меньше масс черных дыр. Теоретически это означало, что столкновение должно также сопровождаться электромагнитным излучением. И действительно, ровно через две минуты после регистрации LIGO и Virgo сигналов гравитационных волн космический гамма-телескоп Fermi зафиксировал интенсивную вспышку гамма-излучения. За несколько минут удалось оповестить более широкий круг участников сообщества LIGO/Virgo, включая Бранчези, что стало началом очень долгой исторической телеконференции.
За сто лет до открытия
Помните рассказ об Исааке Ньютоне, которого ударило по голове яблоко – и тогда он внезапно догадался, как действует сила тяготения? Считается, что озарение снизошло на Ньютона именно так, но это не совсем точно, хотя он действительно наблюдал, как в саду его усадьбы Вулсторп в графстве Линкольншир с дерева падают яблоки. Возможно, и три с лишним века спустя эта яблоня все еще растет в том же саду. Ньютона занимал вопрос: почему яблоки всегда падают на землю? Раздумывая на эту тему, он построил теорию всемирного тяготения. Эта работа опубликована в 1687 году. В соответствии с теорией Ньютона, сила тяготения – это сила, действующая на все материальные тела во Вселенной и зависящая как от массы, так и от расстояния. Согласно Ньютону, все без исключения частицы вещества притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними
. Закон всемирного тяготения Ньютона в неизменном виде господствовал до тех пор, пока не появился Эйнштейн.
Для Эйнштейна – служащего швейцарского патентного бюро, который занимался физикой в свободное время, – сила притяжения вообще силой не была. Он утверждал, что на самом деле это искривление пространства и времени, или пространства-времени, включающего в себя четыре связанные между собой размерности: три пространственные (вверх-вниз, вправо-влево, вперед-назад) плюс еще одна – время. Согласно общей теории относительности, опубликованной наиболее полно в 1916 году, то, что мы воспринимаем как силу тяготения, на самом деле есть следствие кривизны пространства-времени. Массивные объекты, такие как звезды и планеты, изгибают и скручивают его ткань, создавая горы и впадины, хребты и плоскогорья, заставляющие близлежащие объекты двигаться в пространстве-времени зигзагообразно, поднимаясь и опускаясь.
Хотя кажется, что Солнце, притягивая к себе Землю, заставляет нашу планету обращаться вокруг него, это просто означает, что движение Земли определяется искривлением пространства-времени вокруг гораздо более массивного Солнца.
Кроме того, Эйнштейн математически показал, что любая не идеально сферически симметричная ускоряющаяся масса искривляет пространство-время и служит источником гравитационных волн, распространяющихся по Вселенной со скоростью света. Гравитационные волны возникают, даже если просто помахать рукой, но в этом случае они слишком малы и их нельзя заметить. Чтобы деформация пространства-времени была измеримой, требуется невероятно большое количество энергии. Такое, как при катастрофических космических событиях, в которых принимают участие столь массивные объекты, как черные дыры и нейтронные звезды, обращающиеся друг относительно друга, а затем сталкивающиеся на скорости, равной одной трети скорости света. Согласно Эйнштейну, подобное столкновение приводит к возбуждению гравитационных волн большой энергии, которые, распространяясь, “омывают” планеты, звезды и все, что встретят на своем пути. Они несут с собой информацию об источнике, вызвавшем их появление, и, возможно, даже о природе гравитации. В своих более поздних работах Эйнштейн несколько раз возвращался к этой ряби на пространстве-времени, но десятки лет гравитационные волны существовали только теоретически
.
В 1974 году астрономы Рассел Алан Халс и Джозеф Хотон Тейлор – младший из Массачусетского университета в Амхерсте косвенным образом доказали существование гравитационных волн. Они заметили, что в системе двух гравитационно связанных нейтронных звезд орбитальный период, то есть время, которое требуется звездам, чтобы совершить оборот вокруг общего центра масс, постепенно уменьшается. Два тела постепенно сближаются, двигаясь навстречу неизбежному столкновению, поскольку, по мысли Халса и Тейлора, система теряет энергию в форме гравитационных волн. Сейчас такую систему называют пульсаром Халса – Тейлора. В 1993 году эти ученые получили за свою работу Нобелевскую премию
.
Однако прямым свидетельством существования гравитационных волн результаты Халса и Тейлора не были. Требовалось экспериментальное подтверждение, а для этого ученым необходимо было новое, необычайно точное оборудование. Результат: два работающих вместе детектора-близнеца LIGO – один в Хэнфорде, штат Вашингтон, другой в Ливингстоне, штат Луизиана. Каждый из детекторов использует интерференцию двух лучей лазера, что позволяет невероятно точно измерять расстояния. Обсерватория, которая эксплуатируется Массачусетским и Калифорнийским технологическими институтами, находится в ведении научного сообщества LIGO – группы, состоящей из тысячи ученых из университетов шестнадцати разных стран. В восьмидесятых годах об идее создания LIGO впервые заговорили Райнер Вайсс, Кип Торн и Барри Бэриш, но поскольку требовалось преодолеть бюрократические барьеры и добиться значительного финансирования, которое необходимо для реализации больших научных проектов, до начала строительства прошло еще десять лет. Наконец в 2002 году LIGO приступила к работе
.
А еще через пять лет, в 2007 году, к ним присоединился третий детектор – Virgo. Он расположен вблизи итальянского города Пиза и финансируется Европейским Союзом
. Поскольку ученым потребовалась помощь Virgo для определения точного местоположения первого наблюдавшегося слияния нейтронных звезд, я решила отправиться туда. Мной руководило стремление ближе познакомиться с удивительной аппаратурой этого детектора. Ее появление – результат изобретательности человека, который стремится узнать больше о самых захватывающих тайнах космоса и медленно, но неуклонно, шаг за шагом, продвигается вперед.
Я начала с Пизы и, конечно, поднялась на наклонную, правда, все-таки устоявшую башню. Хотя задержалась я там недолго: наклон башни в четыре градуса сыграл с моим мозгом злую шутку, и я быстро почувствовала, что меня укачивает. Пизанская башня еще известна как место, где проведен, пожалуй, самый известный эксперимент, относящийся к силе тяжести. Возможно, этого эксперимента никогда и не было: историки сходятся на том, что итальянский ученый Галилео Галилей никогда не сбрасывал с башни две сферы с разными массами. Это был только мысленный эксперимент. И все же я инстинктивно глянула вниз. Кто знает, может, кому-то захотелось повторить “подвиг” Галилея, и я увижу сброшенные на землю предметы. Правда, чтобы не вызывать у посетителей искушения повторить известный эксперимент, сбрасывая с башни все подряд, теперь, перед тем как подняться, надо обязательно сдать на хранение все свои сумки.
Но на самом деле я здесь не для того, чтобы увидеть башню. Всего в двадцати минутах езды на машине от Пизы, в красивой сельской местности Тосканы есть деревня Санто-Стефано-а-Мачерата, а рядом с ней – необычная научная достопримечательность: две невысокие полуцилиндрические галереи длиной по три километра каждая. Сверху галереи выкрашены в немыслимый голубой цвет со светлофиолетовым оттенком и почти сливаются с небом. (“Цвет перванш”, – слышу я слова другого посетителя, и он прав.) Расположенные в поле под прямым углом друг к другу, галереи с небольшими мостиками над ними тянутся до виднеющегося вдали горного хребта. Летящему над ними дрону они будут видны как гигантская латинская буква L. Это интерферометр Virgo, входящий в Европейскую гравитационную обсерваторию. Интерферометр назван так в честь скопления галактик Virgo (“Дева”). Это скопление, состоящее из примерно 1500 галактик, расположено в созвездии Дева, на расстоянии около 50 миллионов световых лет от Земли.
Строительство Virgo началось в 1996 году. Детектор находится в ведении научно-исследовательской группы ученых из Франции, Италии, Нидерландов, Польши и Венгрии, хотя примерно половина операционных расходов приходится на Францию и Италию. По словам сопровождавшего меня физика-экспериментатора Валерио Воски, это не самое подходящее для детектора место. Virgo находится слишком близко и к Средиземному морю, и к городу Пиза – источникам сейсмических возмущений, создающих помехи. Чтобы уловить невероятно слабый сигнал от идущих к нам из космоса гравитационных волн, очень важно минимизировать подобный шум. Однако, когда Virgo только планировался, важнее было отыскать достаточно большой участок земли для постройки интерферометра с длиной плеча три километра. Чтобы выкупить землю для строительства, финансирующим проект французскому Национальному центру научных исследований и итальянскому Национальному институту ядерной физики пришлось договариваться с большим числом фермеров.
Окончательная стоимость работ, завершившихся в 2003 году, составила около 250 миллионов евро (для сравнения: стоимость двух близнецов-детекторов LIGO – порядка 600 миллионов евро). За последние несколько лет после регистрации гравитационных волн число посетителей, желающих взглянуть на этот “прибор”, резко возросло. Директор Европейской гравитационной обсерватории Ставрос Кацаневас рассказывает: “В 2015 году у нас побывало около тысячи человек, в 2016-м уже две тысячи, а сейчас, в 2019-м, восемь тысяч посетителей. Нам все труднее и труднее с этим справляться!” В самом деле, в день моего посещения я сама видела три группы, приехавшие на припаркованных рядом туристических автобусах: две группы школьников и одна – студентов университета.
Быстро осмотрев информационный центр для посетителей, я в сопровождении многочисленных, снующих в траве ящериц направилась к одной из двух полуцилиндрических галерей и вошла внутрь. В обеих галереях размещены длинные, идентичные, очень хорошо экранированные трубы диаметром но сантиметров, где установлены приборы, работающие в сверхвысоком вакууме. Детекторы Virgo и LIGO должны регистрировать волны в частотном диапазоне от 10 до 10000 герц (10 кГц), и принципы их работы очень схожи. Когда я вошла в небольшое помещение в месте соединения труб, меня попросили ступать очень осторожно, чтобы во время работы не слишком сотрясать пол. Здесь находится лазер, луч которого разделяется пополам. Каждая из “половинок” луча точно в одно и то же время посылается в дальний конец каждого из перпендикулярных плеч, где попадает на зеркало. Зеркала Virgo присоединены к специальному подвесу (его прототип демонстрируется у входа в главное здание). Это очень чувствительный механизм, гасящий, насколько возможно, любые возмущения, способные раскачать зеркало. Их источниками могут быть как, например, землетрясение, так и проходящий мимо трактор. Это удивительно простая система, состоящая из подвешенных один под другим грузов, которые компенсируют любые возмущения.
“Это похоже на эксперимент, который мы предлагаем провести детям, – говорит мне Боски. – Если наполнить водой бутылку и подвесить ее, затем добавить снизу еще одну бутылку, ниже еще одну и так далее, то, начав раскачивать всю эту конструкцию, вы увидите, что из самой нижней бутылки не выльется ни капли воды, даже если сверху отклонение очень сильное”.
Система LIGO, где больше активных элементов, несколько отличается от системы Virgo.