Оценить:
 Рейтинг: 3.5

Нейронные сети. Эволюция

<< 1 ... 9 10 11 12 13 14 15 >>
На страницу:
13 из 15
Настройки чтения
Размер шрифта
Высота строк
Поля

Еще одно подтверждение, постепенного, на основе старого аппарата, хода эволюции, в сторону улучшения классификации искусственного нейрона.

Теперь, зайдем с другой стороны функции ошибки:

Снова замечаем, что (E2 – E1 = ?E) и (w2 –w1 = ?w), откуда делаем вывод:

?w = ?E/?w

В этом случае, для обновления весового коэффициента, в сторону снижения функции ошибки, а значит до значения находящееся левее (w1), необходимо от значения (w1) вычесть дельту (?w):

новыйwij= старый wij- ?E/?w

Получается, что независимо от того, какого знака производная ошибки от весового коэффициента по входу, вычитая из старого значения – значение этой производной, мы движемся в сторону уменьшения функции ошибки. Откуда можно сделать вывод, что последнее выражение, общее для всех возможных случаев обновления градиента.

Запишем еще раз, обновление весовых коэффициентов в общем виде:

новыйwij= старый wij– dE/dwij

Но мы забыли еще об одной важной особенности… Сглаживания! Без сглаживания величины дельты обновления, наши шаги будут слишком большие. Мы подобно кенгуру, будем прыгать на большие расстояния и можем перескочить минимум ошибки! Используем прошлый опыт, чтоб устранить этот недочёт.

Вспоминаем старое выражение при нахождении сглаженного значения дельты линейного классификатора: ?А = L*(Е/х). Где (L) – скорость обучения, необходимая для того, чтобы мы делали спуск, постепенно, небольшими шашками.

Ну и наконец, давайте запишем окончательный вариант выражения при обновлении весовых коэффициентов:

новыйwij= старый wij– L*(dE/dwij)

Еще раз можем убедиться, в постепенном улучшении свойств, в ходе эволюции искусственного нейрона. Много из того что реализовывали ранее остается, лишь небольшая часть подверглась эволюционному улучшению.

Ложный минимум

Если еще раз взглянуть на трехмерную поверхность, можно увидеть, что метод градиентного спуска может привести в другую долину, которая расположена правее, где минимум значения будет меньше относительно той долины, куда попали мы сейчас, т.е. эта долина не является самой глубокой.

На следующей иллюстрации показано несколько вариантов градиентного спуска, один из которых приводит к ложному минимуму.

Поздравляю! Мы прошли самую основу в теории нейронных сетей – метод градиентного спуска. Освоив этот материал, в дальнейшем, изучение теории искусственных нейронных сетей, не будет представлять для вас значимого труда.

Как работает эволюционировавший нейрон

Ну вот и настало время проверить практически, все наши умозаключения, касающиеся работы нашего искусственного нейрона, после первой эволюции. Для этого прибегнем к помощи Python, но сначала покажем наш список с данными, с которого мы это всё затеяли:

Если по координатам построить точки на плоскости, то мы заметим, что их значения лежат возле значений графика функции – y = 2x + 2,5.

Программа

import random

# Инициализируем любым числом крутизны наклона прямой w1 = A

w1 = 0.4

w1_vis = w1 # Запоминаем начальное значение крутизны наклона

# Инициализируем параметр w2 = b – отвечающий за точку прохождения прямой через ос Y

w2 = random.uniform(-4, 4)

w2_vis = w2 # Запоминаем начальное значение параметра

# Вывод данных начальной прямой

print('Начальная прямая: ', w1, '* X + ', w2)

# Скорость обучения

lr = 0.001

# Зададим количество эпох

epochs = 3000

# Создадим массив (выборку входных данных) входных данных x1

arr_x1 = [1, 2, 3, 3.5, 4, 6, 7.5, 8.5, 9]

# Значение входных данных второго входа всегда равно 1

x2 = 1

# Создадим массив значений (целевых значений)

arr_y = [4.3, 7, 8.0, 10.1, 11.3, 14.2, 18.5, 19.3, 21.4]

# Прогон по выборке

for e in range(epochs):

for i in range(len(arr_x1)): # len(arr) – функция возвращает длину массива

# Получить x координату точки

x1 = arr_x1[i]

# Получить расчетную y, координату точки

y = w1 * x1 + w2

# Получить целевую Y, координату точки

target_Y = arr_y[i]
<< 1 ... 9 10 11 12 13 14 15 >>
На страницу:
13 из 15