
A History of Inventions, Discoveries, and Origins, Volume I (of 2)
Wolf and other mathematicians are of opinion that the most advantageous form of a speaking-trumpet would be found with more certainty by experience than by theory. It may then be asked, whether any one ever caused such an instrument to be made from these descriptions. Kircher, who attempted things much more improbable, says he never tried it. Duhamel however relates that a Frenchman tried it, and discovered the real instrument231; but this information is of little weight, as it is much to be doubted that this Frenchman caused it to be made sufficiently exact according to the ancient description. I am as little acquainted with Bettini as Morhof; but I suspect that Duhamel meant Mar. Bettini, who, without making the smallest mention of Alexander’s horn, proposes only a tube, the one end of which should be applied to the mouth of a person who speaks, and the other to the ear of one who is dull of hearing232. This was rather an ear-trumpet than a speaking-trumpet, and it is certain that the former was invented before the latter.
What we read in Porta, and what many think alludes to a speaking-trumpet, alludes evidently to an ear-trumpet only. That author infers, very justly, from the form of the ear, and particularly from that of the ears of those animals which are quick of hearing, that to hear at a distance one must apply to the ear a kind of wide funnel, as people to strengthen the sight use spectacles233. He asserts also, with equal truth, that one, through a long tube, can convey a whisper to the ear of another person at a very great distance234; an experiment which he himself made at the distance of two hundred paces. Schwenter, who wrote before the speaking-trumpet was known, proposes, from the hint of Porta, an ear-trumpet, one end of which should be applied to the ear235.
Sir Samuel Morland, an Englishman, and the jesuit Kircher, have in later times contended respecting the invention of the speaking-trumpet. The former, in 1671, published a particular description of one, after he had made many experiments upon it the year preceding. This instrument, shaped like a wide-mouthed trumpet, he caused first to be constructed of glass, and afterwards of copper, with various alterations, and performed several experiments with it in presence of the king (Charles II.), prince Rupert, and other persons, who were astonished at its effects236.
As an account of this discovery was soon spread all over Europe, Kircher asserted that he had constructed speaking-trumpets before Sir Samuel Morland, and supported his assertion by referring to his former writings, and by the testimony of other authors. I shall first take notice of the former. His Ars Magna Lucis et Umbræ was first printed in 1643. I at least conclude so, because, in the preface to his Phonurgia, printed in 1673, he says that work had been published thirty years before. The second edition is of 1671, in which I find only the already-quoted passage respecting Alexander’s horn, and the figure of a tube, which, like that proposed by Bettini, should be applied to the ear of a person who hears, and to the mouth of the speaker. The Musurgia, printed in 1650, contains better grounds for supporting the assertion of Kircher. In the second part he describes how a funnel can be placed in a building in such a manner, that a person in an apartment where the narrow end is introduced can hear what is spoken without the building, or in another apartment, where the wide end may be. To this description a figure is added, and the author acknowledges he was led to that idea by the construction of a well-known building of Dionysius237. He does not however say expressly that he had ever tried the experiment; but in the last page of the preface to the Phonurgia, he pretends that so early as the year 1649 he had caused such a machine to be fixed up in the Jesuits’ college. But, supposing this to be true, it can only be said that he then approached very near to the invention of the speaking-trumpet, by an instrument, which, in reality, however, was calculated to strengthen the hearing, and not the voice; and therefore only the half is true of what he advanced in his preface in 1673, that twenty years before he had described in his Musurgia the trumpet invented in England.
In the Phonurgia, however, written after Morland’s publication was everywhere known, Kircher certainly treats of the speaking-trumpet, and says that, from the similarity of the progress of sound to that of the rays of light, he was led to the idea of conveying the former, in the same manner as the latter, to a great distance, by means of an instrument. For this purpose, about twenty-four years before, he had caused to be constructed, in the Jesuits’ college at Rome, an ear-trumpet, through which the porter could communicate anything he had to say to him when he was in his apartment in the upper story. This apparatus attracted the notice of many strangers, who were astonished at its effect. He here represents it as a proper speaking-trumpet, and adds, that it excited much surprise, on account of the uncommon strength which it gave to the voice. For this reason he was very desirous of trying to what distance words could be distinctly conveyed by such a tube; and an opportunity occurred of doing this the same year that he wrote his Phonurgia. From a convent, situated on the top of a mountain, he assembled twelve hundred persons to divine service, at the distance of from two to five Italian miles, and read the Litany through it. Soon after, the emperor caused a tube to be made according to Kircher’s description, by which, without elevating the voice, he could be understood from Ebersdorf to Neugebeu. But though Kircher came so near to the invention of the speaking-trumpet, it does not appear certain by his works that he attempted or constructed it before Sir Samuel Morland. I shall now examine the evidences he adduces in his favour.
The most important of these is Schott, because he published his Magia Naturalis238 in 1657, before the invention of Sir Samuel Morland. All that is to be found in this work, however, relates alone to the ear-trumpet, a figure of which is added from the Musurgia; but we learn, with certainty, that Kircher then had the before-mentioned funnel or tube in his apartment. It is also not improbable that he had tried to answer the porter from his apartment, and that he had thereby remarked that the voice was strengthened; for it is not proved by Schott that he at that time was acquainted with and had in his possession a portable speaking-trumpet.
Another author by whom Kircher endeavours to support his claim is Harsdorfer; who, however, speaks only of tubes to be closely applied to the mouth and to the ear, and who refers to the Musurgia, without mentioning the real speaking-trumpet, though the second part of his Mathematical Recreations was first printed in 1677, and the third in 1692. Besides these testimonies, Kircher quotes also Eschinard concerning sound239. With that work I am not acquainted; but as the information it contains is taken from the Musurgia, it is of as little importance as that of Derham240, who refuses the invention to his countryman, and gives it to Kircher. When I unite all the evidence in favour of Kircher, it appears to be certain that he made known and employed the ear-trumpet earlier than the portable speaking-trumpet; that he, however, approached very near to the invention of the latter, but did not cause one to be constructed before Sir Samuel Morland, to whom the honour belongs of having first brought it to that state as to be of real use. Such, at least, is the manner in which this dispute is decided by the Jesuit De Lanis241.
When Morland’s invention was made known in France, it was pretended that Salar, an Augustine monk, had seven or eight years before caused such tubes or trumpets to be made, in order to strengthen the voice of a weak bass-singer; but he himself acknowledges that he never had an idea of speaking with them at a distance242.
This instrument was soon made for sale at Nuremberg in Germany, particularly by that well-known artist Grundler, mentioned by Becher, who imagined that two persons, by means of a speaking-trumpet and an ear-trumpet, could converse together at a great distance, without any one in the neighbourhood, or in the intermediate space, hearing what they said.
Of those who employed their ingenuity in improving this instrument I shall mention the following. Cassegrain, known on account of his optical instruments, published some hints for that purpose in 1672243; as did Sturm244, Conyers245, Hase and others afterwards. The last who investigated the theory of the speaking-trumpet was Lambert246; according to whose ideas the figure of a shortened cone, if not the best, is at least as good as any other that might be employed.
[It would appear, however, from the experiments of Hassenfratz (Journ. de Phys., t. xxvi.) that neither the shape of the instrument nor the material of which it is composed is of much consequence. He ascertained the power of the trumpet by fixing a small watch in the mouth-piece, and observing the distance at which the beats ceased to be audible, and thus found that the effects were precisely the same with a trumpet of tinned iron, whether used in its naked form, or tightly bound round with linen to prevent vibration, or when lined with woollen cloth whereby reflexion was entirely prevented; he also found that the range of a cylindrical trumpet was as great as that of a conical one.
Leslie supposes the effect of the trumpet to be owing to the more condensed and vigorous impulsion given to the air from its lateral flow being checked. He observes, “that the tube, by its length and narrowness, detains the efflux of air, and has the same effect as if it diminished the volubility of that fluid, or increased its density. The organs of articulation strike with concentrated force, and the pulses, so vigorously thus excited, are, from the reflected form of the aperture, finally enabled to escape and to spread themselves along the atmosphere247.”]
ANANAS. – PINE-APPLE
To discover the excellence of the ananas required no great skill; it recommended itself so much by its taste, smell, and colour, as to attract the notice of the first Europeans who visited Brazil; and we find it praised in the earliest writers on America, who give an account of it, as well as of tobacco, maize, and other productions of the new world.
Gonçalo Hernandez de Oviedo is, as far as I know, the first person who described and delineated the ananas. This author was born at Madrid in 1478, went to America in 1513, and in 1535 was governor of St. Domingo. In the last-mentioned year his General History of America was printed at Seville. At that time three kinds were known, which in America were called yayama, boniama, and yayagua, but by the Spaniards pinas. Attempts had then been made to send the fruit to Spain by pulling it before it was ripe; but it had always become spoilt in the course of the voyage. Oviedo had tried also to send slips or young shoots to Europe, but these also died by the way. He however entertained hopes that means would be found to rear the ananas in Spain, in which maize or Turkish corn had been brought to maturity, provided it could be transported with sufficient expedition248.
Geronimo Benzono, a Milanese, who resided in Mexico from 1541 to 1555, caused, on his return, his History of the New World to be printed, for the first time, at Venice in 1568. In this work he highly extols the pinas, and says he believes that no fruit on the earth can be more pleasant; sick persons, who loathed all other food, might relish it.
After him, Andrew Thevet, a French monk, who was in Brazil from 1555 to 1556, described and delineated this plant under the name of nanas. The art of preserving the fruit with sugar was at that time known249.
John de Lery, who went to Brazil in 1557 as chaplain to a Huguenot colony, in the account of his voyage first used the word ananas, which probably took its rise from the nanas of Thevet250.
In the middle of the sixteenth century Franc. Hernandes, a naturalist, undertook an expensive, and almost useless voyage to Mexico. It cost Philip II. king of Spain 60,000 ducats, and the observations he collected, for which, at the time Acosta was in America, 1200 figures were ready, were never completely printed; and in what are printed one can scarcely distinguish those of the original author from the additions of strangers. He has, however, given a somewhat better figure of the ananas, which he calls matzatli or pinea Indica251.
Christopher Acosto, in his Treatise of the drugs and medicines of the East Indies, printed in 1578, calls this plant the ananas. He says it was brought from Santa Cruz to the West Indies, and that it was afterwards transplanted to the East Indies and China, where it was at that time common. The latter part of this account is confirmed by J. Hugo de Linschotten, who was in the East Indies from 1594 to 1595252.
Attempts were very early made, as Oviedo assures us, to transplant the ananas into Europe; and as in the beginning of the seventeenth century it was reckoned among the marks of royal magnificence to have orange-trees in expensive hot-houses, it was hoped that this fruit could be brought to maturity also in the artificial climate of these buildings. These attempts, however, were everywhere unsuccessful; no fruit was produced, or it did not ripen, because, perhaps, this favourite exotic was treated with too much care. It is not certainly known who in Europe first had the pleasure of seeing ananas ripen in his garden; but it appears that several enjoyed that satisfaction at the same time in the beginning of the last century.
The German gardens in which the ananas was first brought to maturity appear to have been the following. First, that of Baron de Munchausen, at Schwobber, not far from Hameln, which on account of the botanical knowledge of its proprietor, and the abundance of plants it contains, is well-known to all those who are fond of botany. In the beginning of the last century it belonged to Otto de Munchausen, who, perhaps, was the first person who erected large buildings for the express purpose of raising that fruit, and who had the noble satisfaction of making known their advantageous construction. With this view he sent a description and plan of his ananas-houses to J. Christopher Volkamer, a merchant of Nuremberg, who inserted them in his continuation of the Nuremberg Hesperides, printed there in 1714, and by these means rendered the attainment of this fruit common. This Baron de Munchausen is the same who has been celebrated by Leibnitz: “All the travellers in the world,” says that great man, “could not have given us, by their relations, what we are indebted for to a gentleman of this country, who cultivates with success the ananas, three leagues from Hanover, almost on the banks of the Weser, and who has found out the method of multiplying them, so that we may, perhaps, have them one day as plentiful, of our own growth, as the Portuguese oranges, though there will, in all appearance, be some deficiency in the taste253.” As the Baron Munchausen’s garden at Schwobber was in the absence of the proprietor, as Volkamer says, under the care of J. F. Berner, canon of the cathedral of St. Boniface, he probably may have had some share in rendering this service to horticulture.
This fruit was produced also in the garden of Dr. Volkamer at Nuremberg, and in that of Dr. F. Kaltschmid at Breslau, almost about the same time. The latter was so fortunate as to bring it to maturity so early as 1702, and he sent some of it then for the first time to the imperial court. At Frankfort on the Maine it was first produced in 1702254; and at Cassel in 1715, by the skill of Wurstorfs, the head gardener.
Holland procured the first ripe ananas from the garden of De la Court, whom Miller calls Le Cour, in the neighbourhood of Leyden. As a great many plants were sold out of this garden to foreigners, and as the English had theirs first from it, many are of opinion that Europe is indebted for the first possession of this fruit to De la Court, and his gardener William de Vinck255.
I shall here take occasion to mention a circumstance which belongs also to the history of gardening. Before the cultivation of the ananas was introduced, the Dutch had begun to employ tanner’s bark for making forcing-beds. From them the English learned this improvement, and the first forcing-beds in England were made at Blackheath in Kent, in 1688, and employed for rearing orange-trees; but about the year 1719, much later than in Holland, ananas became more common, and forcing-beds were in much greater use256.
This plant, the history of which I have given, received from Plumier257, who first distinguished its characters, the name of Bromelia258, after the Swedish naturalist, whose remembrance deserves to be here revived. Olof Bromelius was born in 1639, at Oerebro, where his father carried on trade. He studied physic at Upsal, disputed there in 1667 de Pleuritide, and in 1668 taught botany at Stockholm. In 1672 he was physician to the embassy to England, and afterwards to that to Holland, where, in 1673, he received the degree of doctor at Leyden, and wrote a dissertation De Lumbricis. On his return to his native country, in 1674, he became a member of the college of physicians at Stockholm; but in 1691 he was city physician to Gottenburg, and provincial physician in Elsburg and Bahuslan, in which situation he died in the year 1705. His botanical writings are Lupologia, and Chloris Gothica259. His son, Magnus von Bromel, is the author of Lithographia Suecana.
[Within the few last years, large numbers of pine-apples have been imported into this country from the Bahamas, where they are grown as turnips are grown in our fields. They are sold comparatively speaking at an extremely moderate price, and those that have become somewhat spoilt by the long carriage are hawked about the streets of London at a halfpenny or penny per slice. They are however vastly inferior in flavour to the pines cultivated in our hot-houses, but it is to be expected, from the considerable demand, that greater care will be bestowed on their cultivation, and the markets of London be regularly supplied with a much improved kind.]
SYMPATHETIC INK
If we give this name to any fluid, which when written with, will remain invisible till after a certain operation, such liquids were known in very early periods. Among the methods, with which Ovid teaches young women to deceive their guardians, when they write to their lovers260, he mentions that of writing with new milk, and of making the writing legible by coal-dust or soot. Ausonius proposes the same means to Paulinus261; but his commentators seem not to have fully understood his meaning; for favilla is not to be explained by favilla non modice calida, as Vinetus has explained it, but by fuligo. That word is often employed by the poets in the same sense. As a proof of it, Columella, speaking of the method, not altogether ineffectual, and even still used, of preserving plants from insects by soot, calls it nigra favilla; and afterwards, when mentioning the same method, free from poetical fetters, he says fuliginem quæ supra focos tectis inhæret262. It may be easily perceived, that instead of milk any other colourless and glutinous juice might be employed, as it would equally hold fast the black powder strewed over it. Pliny, therefore, recommends the milky sap of certain plants for the like purpose263.
There are several metallic solutions perfectly colourless, or, at least, without any strong tint, which being used for writing, the letters will not appear until the paper be washed over with another colourless solution, or exposed to the vapour of it; but among all these there is none which excites more astonishment, than that which consists of a solution of lead in acetic acid, and which by sulphuretted hydrogen gas becomes black, even at a considerable distance. This ink, which may be employed by conjurers, proves the subtlety of this gas, and the porosity of bodies; as the change or colouring takes place, even when the writing is placed on the other side of a thin wall.
This effect presented itself perhaps accidentally to some chemist; but the discovery is not of great antiquity. Wecker, who compiled his book De Secretis from Porta, Cardan, and several old writers, and printed it for the first time in 1582, and gave a third edition in 1592, must have been unacquainted with it; else he certainly would not have omitted it in the fourteenth book, where he mentions all the methods of secret writing. Neither would it have been unnoticed by Caneparius, whose book De Atramentis was printed at Venice, for the first time, in 1619.
The first person who, as far as I have been able to learn, gave a receipt for preparing this ink, was Peter Borel, in Historiarum et Observationum Medico-physic. Centuriæ quatuor. In this work, which was printed for the first time in 1653, and a second time in 1657, at Paris, and of which there were several editions afterwards, the author calls it a magnetic water, which acts at a distance264. After the occult qualities of the schoolmen were exploded, it was customary to ascribe phænomena, the causes of which were unknown, and particularly those the causes of which seemed to operate without any visible agency, to magnetic effluvia; as the tourmaline was at first considered to be a kind of magnet. Others concealed their ignorance under what they called sympathy, and in latter times attraction and electricity have been employed for the like purpose. Borel, who made it his business to collect new observations that were kept secret, learned the method of preparing this magnetic water from an ingenious apothecary of Montpelier, and in return taught him some other secrets. Otto Tachen, a German chemist265, afterwards thought of the same experiment, which he explains much better, without the assistance of magnetism or sympathy. The receipt for making these liquids, under the name of sympathetic ink, I find first given by Le Mort266, and that name has been still retained267.
Another remarkable kind of sympathetic ink is that prepared from cobalt, the writing of which disappears in the cold, but appears again of a beautiful green colour, as often as one chooses, after being exposed to a moderate degree of heat.
The invention of this ink is generally ascribed to a Frenchman named Hellot. He was, indeed, the first person who, after trying experiments with it, made it publicly known, but he was not the inventor; and he himself acknowledges that a German artist of Stolberg first showed him a reddish salt, which, when exposed to heat, became blue, and which he assured him was made out of Schneeberg cobalt, with aqua regia268. This account induced Hellot to prepare salts and ink from various minerals impregnated with cobalt; but A. Gesner proved, long after, that this ink is produced by cobalt only, and not by marcasite269.
When Hellot’s experiments were made known in Germany, it was affirmed that Professor H. F. Teichmeyer, at Jena, had prepared the same ink six years before, and shown it to his scholars, in the course of his lectures, under the name of sympathetic ink270. It appears, however, that it was invented, even before Teichmeyer, in the beginning of the last century by a German lady. This is confirmed by Pot, who says that the authoress of a book printed in 1705, which he quotes under the unintelligible title of D. J. W. in clave, had given a proper receipt for preparing the above-mentioned red salt, and the ink produced by it271. If it be true that Theophrastus Paracelsus, by means of this invention, could represent a garden in winter, it must be undoubtedly older272.
[In consequence of the progress of modern chemistry and the discovery of a vast number of new chemical compounds, sympathetic inks may be made in an almost endless number and variety. The principal may be classed in the following manner: – 1, such as when dried upon paper being invisible, on moistening with another liquid become again evident: of this kind there are a vast number; among which we may mention a solution of a soluble salt of lead, or bismuth, for writing, and a solution of sulphuretted hydrogen for washing over; the writing then appears black; or green vitriol for writing and prussiate of potash for washing over, when the writing becomes blue273; 2, such as are rendered evident by being sifted over with some powder, as the milk with soot described above; 3, those which become visible by heat, such as characters in dilute sulphuric acid, lemon-juice, solutions of the nitrate and chloride of cobalt, and of chloride of copper; the two former become black or brown, the latter are rendered green, the colouring disappearing subsequently when allowed to cool in a moist place. Amusing pictures are sometimes made with these sympathetic inks, particularly those composed of cobalt; for if a landscape be drawn to represent winter, the vegetation being covered with a solution of cobalt, on holding the paper to the fire, all those portions covered with the solution appear of a bright green, and thus completely change the character of the scene.]