
Энциклопедия будущего
Достоинством объёмной антигравитации является сравнительно малое энергопотребление, и так же компактность формирующего её оборудования, способного разместиться в пространстве порядка 40 кубических сантиметров. Что касается недостатков, их у неё много. Во-первых, она сопровождается всеми проблемами, связанными с изменением физических свойств тел и сред, подвергшихся уменьшению массы, т.е. ей, как и проекционной антигравитации, присущ эффект системной модификации. Во-вторых, посредством неё практически невозможно создать абсолютно равномерные гравитационные условия. В третьих, улучшение равномерности последних неизбежно приводит к её существенному удорожанию. В четвёртых, монтаж и регулировка устройств для обеспечения улучшенной равномерности – очень сложные инженерно-технические операции. В пятых, создаваемое объёмным способом антигравитационное поле не так хорошо локализуется, как у экранной антигравитации, обычно оно достаточно глубоко выходит за пределы корпуса летательного аппарата (антигравитация прежде всего транспортная технология, поэтому все наши примеры относятся к транспортным средствам) – на миллиметры, на сантиметры, а у машин с совсем уж неудачной конструкцией может окончательно затухать и на отдалении десяти-пятнадцати сантиметров. Когда речь идёт о космическом транспорте, мы скажем «ну и подумаешь», всё равно там, снаружи, ничего нет, а вот если транспорт воздушный, тут возникают определённые сложности – он попросту опасен в эксплуатации, плюс подвержен разным неприятным эффектам вроде газозалипания, о котором вы узнаете ниже. Технологии по нормализации эффективности локализации до эксплуатационно безопасных величин существуют, но излишне дорогостоящи, чтобы применять их без действительно крайней нужды. В шестых, вследствие проблем с равномерностью гравитационных условий, форма транспортного средства не может быть слишком сложной. В идеале она должна быть цилиндрической. Ну и в седьмых, применение ГВМ (генератора виртуальном массы), который, как мы знаем, необходим для устранения эффекта системной модификации, в случае объёмной антигравитации затруднено. Энергетические затраты на поддержание виртуальной массы здесь заметно выше, чем при экранной антигравитации, а само наращивание виртуальной массы требует строгой синхронизации с антигравитационным уменьшением реальной массы – эти процессы нужно осуществлять одновременно, снижая реальный вес в то же время наращивать его виртуально на точно такую же величину, иное грозит разнообразными последствиями, от слабовыраженного проявления эффекта системной модификации до выхода ГВМ из строя из-за перегрузки.
Как и антигравитация экранированием, объёмная антигравитация подвержена эффектам отложенной кинетики и кинетического равновесия, однако в её случае они работают несколько по-иному. К примеру, отложенная кинетическая энергия в объёмных антигравитационных системах не становится полностью отключенной, полностью недоступной, она постоянно оказывает влияние на кинетическую энергию текущей массы (т.е. имеющейся у тела под воздействием антигравитации), а та в свою очередь оказывает влияние на неё. Масштаб такого взаимного влияния пропорционален отношению текущей массы тела к его потерянной массе (потерянная масса – это масса, на которую тело стало легче вследствие антигравитации). В целом он относительно невелик. Тем не менее он сказывается как действие незначительной силы, непрерывно прикладываемой к телу отложенной кинетикой, и так же как непрерывное небольшое изменение отложенной кинетики, происходящее в результате слабовыраженного воздействия на неё текущей массы. Принято говорить, что в системе тел, подвергнутых объёмной антигравитации, текущая и потерянная массы стремятся к общему показателю отношения кинетической энергии к массе. Подобная особенность имеет как положительные так и отрицательные стороны. Её положительный момент – она способствует пусть и несущественному но снижению раскомпенсированности кинетики. Отрицательный – отложенная кинетика немного влияет на скорость и направление движения летательного аппарата, то есть её действие приходится постоянно нейтрализовывать, хоть это и не требует особых энергетических усилий.
В настоящее описываемому время объёмная антигравитация является наименее распространённой, так как по характеру действия очень сходна с антигравитацией экранированием, но уступает той по всем важным техническим и эксплуатационным показателям кроме компактности и энергопотребления. Главные её недостатки, это безусловно отрицательное влияние антигравитации на организм человека и затрудненность создания равномерных гравитационных условий. Особенную значимость имеет первый из них. Как известно, ГВМ (генератор виртуальной массы) позволяет полностью устранить системную модификацию, и с учётом, что его применяют практически в каждом транспортном средстве, казалось бы в чём проблема? Но, как мы уже говорили, совместное использование ГВМ и объёмной антигравитации сопряжено с определёнными техническими сложностями, хотя бы с синхронизацией, к тому же сбой в работе ГВМ при экранной антигравитации причинит пассажирам лишь лёгкие неудобства (они окажутся в невесомости), тогда как при объёмной приведёт к их мгновенной неминуемой смерти. Почувствуйте разницу. Вот почему объёмная антигравитация никогда не используется в транспорте, предназначенном для перевозки пассажиров. Впрочем, и в грузовых аэромашинах она тоже не популярна. Наибольшее применение она находит в сфере производства беспилотных летательных мини-аппаратов гражданского и военного назначения, и так же в оружейной промышленности, в частности как основа систем обеспечения околосветовых скоростных режимов космического ракетно-торпедного оружия.
Генератор виртуальной массы
Генераторы виртуальной массы (ГВМ) в полной мере являются источниками искажения гравитации (ИИГ), хотя их функция заключается в обратном по сравнению со всеми остальными ИИГ действии – не уменьшать, а наращивать массу. Прежде всего их применяют для создания комфортной для человека силы тяжести внутри летательных аппаратов, использующих антигравитацию в качестве основы принципа движения. Так же они необходимы для устранения эффекта системной модификации в случаях применения антигравитации объёмного или проекционного типов. Особенность ГВМ в том, что они не могут устойчиво функционировать в нормальных гравитационных условиях. Они должны быть обязательно укрыты от взаимодействия с гравитационным полем вселенной. А для этого им нужна антигравитация. Именно барьер из антигравитационного поля делает возможным генерировать виртуальную массу, т.е. массу, которая не существует в действительности, но обладает всеми основными признаками, присущими реальной массе. Идеален в качестве подобного барьера антигравитационный экран. Объёмная антигравитация подходит на эту роль в значительно меньшей степени, вследствие прежде всего своей пространственной рассредоточенности – в отличие от экрана, она не узенькая прослойка плотного чрезвычайно напряжённого антигравитационного поля, а толстый объёмный его пласт существенно меньшей плотности и напряжённости в пересчете на единицу объёма, на прямой между полюсами генератора антигравитации она имеет наивысшие барьерные свойства, лучше всего не пропускает гравитационные поля, а чем дальше от оной прямой, тем эти свойства слабее, тем больше энергии приходится тратить ГВМ на поддержание виртуальной массы. Что до проекционной антигравитации, она не является источником антигравитационного поля, и потому непригодна для обеспечения работы ГВМ. Антигравитационный барьер необходим ГВМ по одной простой причине – если бы его не существовало, виртуальная масса перестала бы быть в полной мере виртуальной, так как вступила бы в гравитационное взаимодействие со всей остальной вселенной, т.е. через взаимное влияние гравитационных полей стала бы обмениваться со вселенной энергией, из-за чего энергозатраты ГВМ возросли бы до гигантских значений.
По сути ГВМ представляет собой генератор гравитационного поля. В технологиях по нормализации силы тяжести и устранению эффекта системной модификации он используется по-разному. Для создания силы тяжести гравитационное поле должно генерироваться вдоль всей нижней части летательного аппарата (под полом салона), имея чрезвычайно высокую энергетическую плотность и крайне низкую напряжённость. Оно не наращивает массу, а имитирует присутствие гигантской массы под днищем. Тогда как для устранения системной модификации ГВМ можно располагать где угодно, в любом месте салона, генерируемому же полю нужна значительно большая напряжённость при на порядки меньшей энергоплотности. Пребывая подобном поле масса любых тел ведёт себя, словно она возросла, происходит нечто вроде её усиления. При этом важно отметить два принципиальных момента:
1) Отношение кинетической энергии тела к массе остаётся неизменным, скорость тела никак не меняется. Исходя из чего можно говорить, что усиление массы тела сопровождается пропорциональным усилением его кинетической энергии. Как и дополнительная масса, дополнительная кинетическая энергия виртуальна, существует только благодаря ГВМ, и при его отключении исчезает.
2) Основное отличие виртуальной массы от настоящей заключается в отсутствии у неё собственного гравитационного поля. Она получает его извне, от ГВМ. Что означает, виртуальную массу нельзя создать на пустом месте, её можно только усилить, только нарастить у физических тел, изначально обладавших хоть какой-то массой.
Первый пункт снова приводит нас к пониманию несовместимости гравитационных реалий с традиционными законами сохранения энергии. Как бы мы не меняли кинетическую энергию тела с усиленной массой, после отключения усиления эта энергия уменьшится строго пропорционально уменьшению массы. Например, если мы увеличим массу покоящегося тела в 100 раз, разгоним его до 10 000 км/ч, и далее отключим усиление массы, его скорость не изменится, останется равной 10 000 км/ч, то есть вместе с массой и его кинетическая энергия уменьшится ровно в 100 раз. 99% энергии просто исчезнет. Аннигилируется. Данная особенность усиленной массы сформулирована в ещё один из законов антигравитации, носящий парадоксальное название «закона несохранения энергии» (учёные любят шокировать обывателя надуманными парадоксами). Гласит он следующее: «любая энергия, переданная виртуальной массе, при отключении виртуальной массы не сохраняется».
Генераторы виртуальной массы применяются практически во всём современном пассажирском антигравитационном транспорте. Главное их назначение – создание комфортных гравитационных условий, проще говоря, нормальной силы тяжести, в салоне летательного аппарата. Нельзя сказать, что пассажирских аэромашин без ГВМ нет вовсе – они есть, но это всегда малораспространённая техника особых классов: сверхдешёвая (как средство передвижения для самых рачительных из скупцов), лишённая всего, без чего можно летать, в том числе какого бы то ни было намёка на комфортабельность (притяжение в ней заменяют пристяжные ремни), служебная специальная, предназначенная для редкого использования, из-за чего недолгое пребывание внутри неё в невесомости вполне терпимая жертва, целесообразная с позиций экономии. И т.д. В принципе, большинство летательных аппаратов имеют блочную структуру, и покупатель ещё на стадии заводской сборки может заказать себе нужную комплектацию, включающую или не включающую ГВМ по желанию. Однако отсутствие ГВМ считается признаком бедности и дурного тона, кроме того невесомость способна вызывать тошноту, а при длительном воздействии на организм ведёт к ухудшению здоровья, в частности к дистрофии мышц и истончению костей. Посему антигравитационные машины без ГВМ – всё же большая редкость. Если говорить именно о пассажирской технике. В автопилотируемом грузовом и прочем не рассчитанном на перевозку людей транспорте отсутствие ГВМ вполне рядовое явление. Правда здесь необходимо уточнить, даже в тех летательных аппаратах, где ГВМ нет, его нет только номинально, он не используется для нормализации силы тяжести, в сверх упрощённом выхолощенном виде он наверняка всё равно присутствует, потому что нужен системам аварийной посадки. Ведь ныне последние неизменно основаны на проекционной антигравитации, которая вследствие эффекта системной модификации (т.е. вредного влияния антигравитации на людей и технические устройства) без ГВМ применяться не может. Важен факт, что системы аварийной посадки вполне эффективно срабатывают и при отказе оборудования, формирующего экранную антигравитацию. Казалось бы, это противоречит сказанному чуть выше о потребности ГВМ в антигравитационном барьере. Однако дело в том, что затраты энергии на поддержание виртуальной массы без барьера становятся огромными не сразу, они нарастают в считанные мгновенья как снежный ком, вследствие чего ГВМ «захлёбывается» – глохнет. Первые несколько тысячных долей секунды расход энергии вполне приемлем, он по силам и ГВМ и питающей его энергоустановке. Система аварийной посадки успевает рассеять кинетическую энергию от соударения летательного аппарата с землёй именно в эти первые тысячные доли секунды. Если она срабатывает точно в нужный момент, в то самое золотое мгновенье начала удара, попавшие в аварию даже при неработающем экране отделаются всего лишь лёгким испугом. С учётом, что авиакатастрофы с падением фактически всегда являются следствием отказа основного антигравитационного оборудования (т.е. антигравитационного экрана), способность ГВМ работать «безбарьерно», пусть даже в течение мизерного времени, оказывается исключительно ценным их качеством. К слову, военные используют это качество для создания гравитационных бомб, производящих основные разрушение ударным кратковременным импульсом супергравитации.
Другие побочные эффекты антигравитации
Как мы уже поняли, практическое применение антигравитационных технологий не самое простое дело, прежде всего вследствие разнообразных побочных эффектов, сопутствующих изменению столь фундаментального свойства материи, как масса. Это и системная модификация, и отложенная кинетика, и аннигиляция энергии, и невесомость. Здесь в дополнение к перечисленным мы опишем ещё несколько заслуживающих упоминания проблемных моментов антигравитации.
Эффект выталкивания – присущ антигравитационным системам, эксплуатируемым в атмосфере. При падении массы тела до таких значений, при которых оно становится легче воздуха аналогичного объёма, появляется выталкивающая сила, сам воздух начинает вытеснять тело вверх, и тем сильнее, чем значительней разница масс. Для экранных аэромашин сила выталкивания уменьшается приблизительно 10 раз в сравнении с обычными телами, так как молекулы воздуха в момент контакта с корпусом машины частично попадают под действие антигравитации (мы не станем в деталях излагать механику обмена кинетической энергией поверхности антигравитационного экрана с молекулами газов, просто скажем, молекула при контакте с оной поверхностью как бы прилипает и скользит по ней, пока не минует её всю и не «оторвётся» с её противоположной стороны, поэтому тут нет никакого нарушения закона сохранения энергии – та часть энергии, которую молекула не успела передать за время своего скольжения, остаётся при ней же, никуда не деётся; молекулы не отскакивают от корпуса экранного аппарата при соударениях с ним, а именно огибают его). Однако и столь малая сила приложительно к почти нечего не весящему аппарату выливается в большие проблемы. Казалось бы, для полётов она должна быть только в плюс, не надо тратить энергию на поддержание себя в воздухе. В действительности всё как раз наоборот, выталкивающую силу приходится постоянно уравновешивать, расходуя лишнюю энергию. С эффектом выталкивания борются преимущественно двумя способами:
1) Балластным – массу летательного аппарата оставляют достаточно большой (порядка нескольких килограмм для малого транспорта вроде личных аэромобилей), что означает понижение скорости, понижение ускорения, появление некоторой инерции, и необходимость снабжения аппарата двигателями значительной мощности с высоким энергопотреблением. Производители аэромашин стремятся выносить «балластную массу» за пределы пассажирского сегмента салона, т.е. ослаблять антигравитацию так, чтобы тот был не затронут, чем гарантируют отсутствие в нём инерции, иначе при быстром ускорении и торможении пассажирам понадобятся ремни безопасности, а это непопулярный атрибут аэропутешествий в нынешнее время.
2) Двигательным – аппарат оборудуют набором дополнительных «двигателей придавливания», постоянно создающим вертикальную тягу для нейтрализации выталкивающей силы, а так же специальными двигателями или прочими устройствами стабилизации для устранения болтанки, неизбежно возникающей от конфликта двух разнонаправленных сил – выталкивания воздуха и вертикальной тяги. Кроме того, в комплект к двигателям совершенно необходима система автоматического контроля придавливания, как важный элемент обеспечения безопасности полётов (только представьте, ускорение от выталкивающей силы при сверхмалом весе может достигать и километра в секунду, и более). При любом сбое придавливания в то же мгновенье антигравитация ослабляется, чтобы нейтрализовать выталкивание с помощью балласта.
Как правило в современных аэромобилях применяется сочетание обоих способов, причём и здесь вариантов присутствует два:
1) Импульсное уравновешивание – масса аппарата постоянно, с периодичностью от десятитысячных до стотысячных долей секунды, становится то почти нулевой, то настолько большой, чтобы полностью нейтрализовать выталкивающую силу. Это снижает общую скорость аппарата и создаёт ещё целый ряд технических «неудобств», но зато позволяет максимально уменьшить мощность и габариты двигателей придавливания, а иногда даже и полностью оказаться от них, и так же устраняет «болтанку» и необходимость в стабилизационном оборудовании для борьбы с ней.
2) Гибридное уравновешивание – массу балласта делают недостаточной для полного уравновешивания выталкивающей силы, и доуравновешивают её двигателями придавливания. Чем меньше масса, тем экономичнее аэромобиль, тем меньшими энергетическими затратами он преодолевает путь, тем менее мощные двигатели ему требуются, тем слабее в нём проявляются инерция и прочие недостатки, присущие массе. Поэтому подобный компромисс между балластом и его отсутствием в целом выгоден, он гораздо привлекательней с позиций комфорта и лётно-технических характеристик, чем уравновешивание только за счёт увеличения массы.
Следует понимать, проблема выталкивания воздуха существует лишь там, где есть сам воздух – в нижних слоях атмосферы. Вследствие чего условия полёта в атмосфере и стратосфере радикально разнятся. В стратосфере можно делать массу действительно близкой к нулевой, расход энергии на движение падает в сотни раз, наращивание скорости упрощается многократно. Дальние путешествия зачастую экономичнее не слишком далёких – вот в чём парадокс современных перелётов. Если вам надо преодолеть всего километров сто, подниматься в стратосферу особого смысла нет, придётся лететь внизу со всеми вытекающими последствиями. А если пару десятков тысяч, имеются все резоны сразу набрать высоту, причём набирать вы будете её в основном за счёт выталкивающей силы – ещё один фактор экономии.
Эффект газозалипания – свойственен объёмной антигравитации при эксплуатации её в атмосфере. Генерируемое объёмным способом антигравитационное поле чаще всего выходит за границы корпуса летательного аппарата – на миллиметры, на сантиметры, иногда и более в зависимости от конструктивных особенностей конкретной модели аэромашины. Попадая в эту антигравитационную прослойку молекулы воздуха теряют массу, теряют давление и прижимаются друг к другу, набиваясь в неё как селёдки в бочку. Аппарат оказывается как бы в коконе из них, почти невесомых плотно «утрамбованных». Летать они особо не мешают, но вот взлёт и посадку превращают в некоторую проблему. Представьте, летательный аппарат приземляется и отключает антигравитационное поле. Окружающий его воздушный кокон немедленно обретает массу и мгновенно расширяется, что совершенно подобно взрыву, и взрыв этот достаточно мощен, чтобы причинить ущерб самому транспортному средству и нанести повреждения близлежащим объектам. Посему объёмную антигравитацию с недостаточно эффективной локализацией антигравитационного поля нельзя отключать резко, её деактивируют плавно в течение как минимум нескольких секунд, и так или иначе это всегда сопровождается небольшим порывом ветра, идущим от аппарата во все стороны. Характерный момент – если подобная машина села на пыльную поверхность, после выключения антигравитации вокруг неё поднимется облако пыли, если на покрытую опавшими листьями землю – листья рядом с ней взлетят и закружатся (исключение – применение протоколов замедленного отключения, когда антигравитацию снижают до нуля в течение 30 секунд или более). Включение антигравитации таит в себе гораздо менее выраженные негативные последствия, однако они всё равно есть. Так что и его производят плавно. Оно тоже сопровождается небольшим порывом ветра, только идущим уже извне со всех сторон к аппарату.
Гравитационный ожог – газозалипание не единственное неудобство объёмной антигравитации. Если она плохо локализована, при прикосновении к корпусу оснащённой ей включенной аэромашины обязательно получишь «гравитационный ожог» – серьёзное повреждение тканей, причинённое эффектом системной модификации.
Вихревое сопротивление воздуху – ещё одна особенность объёмной антигравитации со слабой локализацией. «Залипший» воздух в прослойке из антигравитационного поля ведёт себя иначе, чем нормальный воздух за её пределами, контакт этих двух субстанций в пограничной области действия антигравитации приводит к возникновению между ними множества микротечений, микро-завихрений и других усложнённых процессов обмена веществом и энергией. В результате сопротивление воздуха не исчезает полностью, как мы могли бы надеяться (ведь попадая по действие антигравитации молекулы газов утрачивают массу, а сопротивление оказывает именно масса), оно всего лишь ослабляется в несколько раз, что по сути конечно же хорошо, но всё ещё довольно много для ничего не весящего антигравитационного транспорта, ведёт к значительному росту затрат энергии при полёте на высоких скоростях.
Сопротивление воздуху – у антигравитационных систем с эффективной локализацией заметно меньше, чем у систем с неэффективной, но так или иначе всё равно присутствует, даже у экранной антигравитации оно есть. Для современных летательных аппаратов, с их высокими скоростями и отсутствием массы, и столь малое сопротивление весьма серьёзная помеха. Неспециалисты частенько задают вопрос: почему экранные антигравитационные летающее машины вообще испытывают сопротивление воздуху? Разве вступая в контакт с антигравитационным полем на обшивке корпуса молекула воздуха не должна терять массу и соответственно кинетическую энергию? А если она их теряет, как она может оказать тормозящее воздействие? В действительности обмен кинетической энергией между атомами и тому подобными величинами достаточно сложный процесс, не следует представлять его как соударение двух твёрдых тел. В общем случае молекулы воздуха успевают передать обшивке некоторую долю своей энергии, частично находясь вне действия антигравитации, далее они начинают «скатываться» по поверхности корпуса точно так же, как это описано выше в «эффекте выталкивания», одновременно служа чем-то вроде внеантигравитационного буфера для других молекул, защитной прослойкой от антигравитационного поля, которая не позволяет тем «прилипнуть и соскользнуть», а отбрасывает их, в результате чего и формируется характерный фронт лобового сопротивления. На малых скоростях ослабление сопротивления доходит до десятикратного, что для антигравитационной машины безусловно тоже очень важно, к примеру, этим в 10 раз снижается влияние ветров на линейную устойчивость движения. При высоких скоростях ослабляемость падает, но никогда не бывает менее четырёхкратной. Как и у обычных летательных аппаратов, у антигравитационных сопротивление воздуху поначалу растёт пропорционально квадрату скорости, а с переходом на сверхзвук или гиперзвук резко усиливается. Таким образом и у них возможности для наращивания быстроты полёта в нижних слоях атмосферы достаточно скромны, обычно ограничиваясь пределом в 0,9-5 маха (0,9-5 скорости звука).
Статическое кинетическое смещение – подразумевает раскомпенсацию кинетики, возникающую без всякого перемещения. Представим ситуацию: вы сели в летательный аппарат, включили антигравитацию, но никуда не летите, просто ждёте. Вроде бы вы совсем не движетесь, стоите на земле. Однако планета то движется, вращается, а значит и вы с ней. Простоите так 12 часов, а потом не скомпенсировав кинетику выключите двигатель… что будет дальше зависит от того, где вы. Если на Венере с её неторопливым вращением вокруг своей оси, ничего излишне фатального не случится, а вот если на Земле, и не на полюсе, а где-то поближе к экватору, понесёт кинетика ваш аппарат и вас вместе с ним со скоростью под километр в секунду. Маловероятно, что вам удастся выжить в таком приключении. Отметим, на силу статического кинетического смещения конечно же влияет всё, включая и орбитальное движение планеты, и движение её звёздной системы, и её галактики, но определяющее влияние здесь оказывает изменение направления вектора скорости, которое у абсолютного большинства планет быстрее всего происходит от вращения вокруг своей оси. Поэтому именно вращение наиболее заметным образом сказывается на величине раскомпенсации кинетики. Чтобы ощутить статическое смещение от орбитального движения планеты, придётся просидеть в работающей машине хотя бы пару месяцев.