Есть такое определение: «Информация – это сведения об объекте, необходимые субъекту для решения любой даннойзадачи». Однако здесь речь идет только о стратегической значимости информации. В связи с этим ее аспектом необходимо напомнить, что информация в принципе не бывает полной, достоверной и своевременной. И применительно к выбору образа действия, выбору стратегии поведения или решению какой-либо иной задачи возникает понятие достаточности имеющейся информации.
Практически приходится смириться с критерием достаточности объема и содержания информации для решения той или иной задачи в данных условиях, в том числе приемлемой меры ее достоверности и не слишком большой задержки в получении необходимых сведений. Эти обстоятельства служат объективными причинами фактической неизбежности ошибок при выборе альтернативных решений, более или менее частых. Недаром говорят, что не ошибается только тот, кто ничего не делает. Компьютерные технологии, благодаря быстродействию, обеспечивают только лишь известную меру своевременности. Достаточность же и достоверность – прерогатива человека, добывающего нужные сведения. В частности, результаты обследования больного в клинической медицине имеют непосредственную прагматическую информационную ценность.
Взаимодействие объектов и информационное взаимодействие
Прямой механический контакт: действие равно противодействию. Это взаимодействие сил. Если при этом возникает сигнал, который может быть принят и интерпретирован (кем-либо) о характере произошедшего события, то этот контакт является источником информации.
Взаимодействие неоднородных, но несистемных структур (куч). Что происходит? Принципиально несистемный объект становится большим или меньшим.
Взаимодействие системных структур. Вот тут-то и начинается формирование сигналов (вышибание, поглощение), их перенос и прием, т. е. начальная часть собственно информационного процесса.
Интерпретация принятых сигналов основывается на предшествовавшем уровне знания у принимающей системы. Это главное условие истинного информационного процесса.
Пример. Источником светового сигнала служит горящая белая лампа, свет которой может проходить через красный светофильтр. Приемник информации, не знающий о светофильтре, получив сигнал красного цвета, сочтет источником излучения красную лампу, а получив сигнал белого цвета, – белую лампу. Приемник, знающий о возможном включении светофильтра, в обоих случаях может правильно оценить значение сигнала.
В заключение этой главы позволю себе привести собственное иронически-философское определение понятия информации: если материя – объективная реальность, данная нам в ощущении, то информация – это субъективная ирреальность, данная нам в измышлении.
ГЛАВА 2
ИНФОРМАТИЗАЦИЯ, ИНФОРМАЦИОННЫЕ ПРОСТРАНСТВА
Информатизация
Сегодня понятие информатизации, как правило, отождествляется с понятием компьютеризации. На самом деле это тоже не так. Компьютеризация является лишь одним из способов информатизации, правда, наиболее современным и достаточно эффективным.
Под информатизацией следует понимать процесс и результат предоставления некоему объекту необходимой ему информации, требующегося ему информационного ресурса. Таким объектом в глобальном аспекте является все человечество, а в более узком – социальные или профессиональные сообщества, группы и отдельные индивидуумы.
Цели информатизации являются многосторонними. Начиная с индивидуального, группового и социального жизнеобеспечения, информационного обеспечения производственных и иных процессов общественной и личной деятельности, научной и образовательной работы, искусства и заканчивая удовлетворением собственного любопытства.
Традиционными современными методами информатизации пока еще являются книги и сеть их хранилищ – библиотек, разнообразнейшие документы (включая архивы), СМИ (радио, телевидение, кино, пресса), реклама, публичные и межличностные сообщения, включая сплетни, а также такие специальные методы, как все виды разведки. Все они, кроме прямых межличностных контактов, требуют специального – иногда сложного и дорогостоящего – технического обеспечения.
Компьютеризация во многом облегчила, но и видоизменила этот процесс, привнеся в него необходимость жесткой регламентации и стандартизации технологии информационной работы.
По недавно опубликованным сведениям, сегодня в мире один персональный компьютер (ПК) приходится в среднем на 10 человек населения Земли независимо от возраста. Это намного превзошло прогнозы 80-х годов прошлого столетия: на конец XX века – один ПК на 50 человек. Правда, существует всего 15 развитых стран, где такая насыщенность максимальна. Россия входит в их число. Наиболее компьютеризированной страной остаются США.
Не стану повторять давно написанное о предпосылках и истории создания компьютеров. Замечу только, что сегодня мы используем ПК четвертого поколения в развитии и совершенствовании технической и информационной базы. С разработкой ЭВМ пятого поколения, что декларировали японские конструкторы, пока ничего не получилось – в общем, по понятным причинам. Но об этом – отдельно.
Вынужденная регламентация и стандартизация информационных технологий при использовании компьютера не является благом. Во многих трудно формализуемых областях знаний, к которым относятся биология, медицина, психология, социология, такие жесткие требования ограничивают необходимую индивидуализацию многогранных и разнообразнейших содержательных знаний об объектах, что влечет за собой определенные утраты чисто смысловых аспектов в стандартных их описаниях. Но за все надо платить, и сегодня – это плата за те колоссальные преимущества, которые предоставляет современный компьютер.
Информатизация медицины и здравоохранения также не сводится только к их компьютеризации. Традиционные методы по-прежнему доминируют. Но применение ПК существенно улучшает и ускоряет эту работу. Некоторые ее виды без компьютера вообще были бы невозможны. В то же время в процессе интенсивной и азартной компьютеризации этой отрасли наблюдается много ошибок.
В 1986 г. Минздрав СССР доложил на Всесоюзной конференции о компьютеризации сети ЛПУ в стране. Обеспеченность ЭВМ отечественного производства составила в среднем 1 экз. на 58 больниц и 1 экз. на 156 поликлиник.
Сегодня в ряде ЛПУ насыщенность компьютерами вполне достаточная. Правда, далеко не во всех. А вот их использование…
Информационные пространства
Все информационные процессы происходят не только во времени, но и в реальном пространстве. Если они включают все компоненты такого процесса (источник, сигнал, канал связи и приемник), то их называют информационным пространством (например, работающий телецентр, телевизионный кабель и включенный дома телевизор).
Следует заметить, что в одном и том же реальном пространстве может одновременно сосуществовать огромное количество информационных пространств, нередко взаимодействующих и мешающих друг другу. Это самостоятельная техническая и организационная проблема, связанная с договорной регламентацией радиочастот от разных источников в эфире и со многими другими сложностями. В то же время по одному и тому же техническому (физическому) каналу связи возможна передача различных сигналов от разных источников, предназначенных для разных приемников.
Если функции приемника и передатчика совмещены в одном техническом устройстве (например, в телефонном аппарате) либо расположены в одном помещении, то попеременное или даже одновременное их применение с использованием одного и того же канала связи обеспечивает возможность двусторонней и даже многосторонней связи между абонентами. При этом физические каналы остаются теми же, но направление проходящих по ним сигналов изменяется на противоположное.
Нередко возникает необходимость предупредить затухание сигналов в протяженных каналах связи либо перенаправить их к другим приемникам. Для этого используются специальные промежуточные устройства, называемые ретрансляторами. Кстати, таким ретранслятором является и надомная телевизионная «тарелка». Самостоятельной проблемой при передаче прямолинейно распространяющихся электромагнитных сигналов на большие расстояния становится кривизна поверхности Земли. Эту задачу успешно решают специализированные спутники связи, дислоцированные на околоземных орбитах в качестве тех же ретрансляторов.
Следует заметить, что немалой самостоятельной технической и информационной проблемой является поиск приемником нужных ему сигналов и выделение их из «общей кучи». Вспомните многолетнюю международную программу SETI, предназначенную для поиска сигналов от внеземных цивилизаций. Аналогичную задачу повседневно и, можно сказать, постоянно решает самый совершенный приемник – человеческая голова. Активный поиск нужных сигналов, выделение их из массы других и отбор сигналов, несущих необходимую (неважно для чего) информацию, является одной из важнейших функций головного мозга. Причем не только человека, но и всех животных, обладающих мозгом.
В рамках данной книги нет необходимости подробнее говорить о технических и содержательных аспектах передачи информации по каналам связи (например, классическую работу К. Шеннона). Хочу только подчеркнуть, что множество разнообразнейших информационных пространств, наряду с универсальностью, получили и продолжают получать свою специализацию.
Одной из перспективных и успешно используемых форм организации информационных пространств является информационная сеть. Ее создание стало возможным только с использованием современных компьютерных технологий, где ПК выступает в качестве и приемника, и передатчика информации, а каналы связи со множеством ретрансляторов охватывают всю Землю в качестве глобальной сети Интернет.
Не так давно была разработана специализированная информационная сеть для взаимосвязи ЛПУ и органов здравоохранения, а также ЛПУ между собой – MedNet. Несмотря на то что MedNet была рекомендована почти в директивном порядке, прижилась она не всюду, однако на некоторых территориях ею успешно пользуются и вполне довольны.
Одним из важных направлений использования информационных сетей в профессиональной клинической деятельности является так называемая телемедицина.
Однако закончить эту главу я хочу несколько неожиданно. Высокий уровень информатизации и его техническая обеспеченность являются в сегодняшнем мире одним из важнейших факторов обороноспособности каждой страны, наряду с ее вооружением.
ГЛАВА 3
ЭЛЕМЕНТЫ ОБЩЕЙ ТЕОРИИ СИСТЕМ В ПРЕДСТАВЛЕНИЯХ О МИРЕ
Материальный мир имеет чрезвычайно сложную иерархическую структуру, хотя, по-видимому, существует и развивается по единым простым правилам. Его изучением занимаются различные, в том числе далекие друг от друга естественные науки.
Существует самостоятельная наука — общая теория систем. По сути, ее следует именовать метатеорией, поскольку в иерархии наук она занимает место между естественными (физическими, биологическими и т. д.) науками и такой общемировоззренческой наукой, которой является философия.
Автором общей теории систем принято считать Л. фон Берталанфи, однако на самом деле ее основоположником является наш соотечественник А. А. Богданов (Малиновский) (1873 – 1928) – врач, философ и общественный деятель. В 1989 г. выпущено двухтомное собрание его трудов за 1913 – 1928 гг. «Тектология (Всеобщая организационная наука)».
Общая теория систем изучает и описывает общие закономерности «устройства и изменения» (развития и распада), т. е. организации объектов нашего многообразного и сложнейшего мира.
Именно на базе общей теории систем возникли такие науки, как кибернетика – наука об общих законах управления в сложных системах, и синергетика – наука о путях их развития. Любые информационные технологии, в том числе и диагностические, также имеют четко выраженный системный характер.
Что же вкладывается в понятие системы? Существует много различных определений. Для целей данного изложения мне импонирует следующее: система – целостный иерархический объект, рассматриваемый как пространственно-временная совокупность взаимосвязанных элементов, в которой свойства системы как целого не сводятся к сумме свойств ее элементов.
Свойства молекул не сводятся к сумме свойств составляющих их атомов; свойства автомобиля не сводятся к сумме составляющих его деталей; свойства многоклеточных организмов не сводятся к сумме свойств их «биологических кирпичиков» – клеток;
ит.д.
Свойства заболевания как целостного явления, события (нозологической формы) не сводятся к сумме свойств составляющих его взаимосвязанных частных патологических процессов.
В целостной системе появляется новое качество – новая совокупность свойств, появляется то, чего ранее не было.
В. А. Энгельгард говорил, что если А и В образуют С, то причина этого заключается в связке «и».
«Секрет» возникновения нового качества кроется в формировании взаимосвязи. То, что мы рассматриваем в данный момент в качестве элементов, на самом деле не является «элементарным», а, в свою очередь, состоит из взаимосвязанных «субэлементов». Сложное состоит из простого. Но простое также не элементарно.
Молекула воды (системный объект) состоит из двух атомов водорода и одного атома кислорода. Это ее элементы. Атом, в свою очередь, состоит из ядра и электронных оболочек. Это его элементы. При образовании молекулы воды элементом взаимосвязи становятся общие электронные оболочки. Происходит экзотермическая реакция: лишний элемент связи вышибается за пределы вновь образовавшейся системы, приобретающей новое качество, отличное от свойств исходных элементов. Для того чтобы произошел обратный процесс (разложение воды на водород и кислород), необходимы затраты энергии, электролиз, «внедрение элементов связи по линиям дезингрессий» (по А. А. Богданову).
И так во всем материальном мире, снизу доверху в его иерархическом устройстве. То обстоятельство, что элементы связи лежат в этой иерархии глубже рассматриваемого уровня, где видны только элементы, а связи часто не просматриваются, создает серьезнейшие гносеологические трудности. Иллюстрацией сказанного служит простой формальный пример: