Оценить:
 Рейтинг: 0

Введение в финансовую математику

Год написания книги
2020
<< 1 2 3
На страницу:
3 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля

в полном сроке рассматриваемого кредита. Получается, что для случая с переменной процентной ставкой можно ввести понятие эффективной процентной ставки сложных процентов, рассчитываемой как взвешенное произведение процентных ставок каждого периода, и которую можно использовать как единый эквивалент для расчета наращенной суммы:

S = P (1 + i

)

.

Сложные проценты с начислением чаще, чем раз в год

Во всех рассуждениях ранее при использовании сложных процентов предполагалось, что они начисляются один раз в год. Однако на практике встречаются случаи, когда начисление происходит чаще. Пусть оно происходит m раз в год, где m – натуральное число. Например, начисление может происходить ежемесячно (m = 12).

Для сложных процентов с начислением один раз в год была получена формула:

S = P (1 + i)

.

Теперь мысленно предположим, что в рассуждениях, из которых была выведена эта формула, период времени «год» будет заменен на период времени «1/m года» или «m-ая доля года». Поскольку все рассуждения останутся в силе, получим формулу:

где i

– процентная ставка за «m-ую часть года», n

– срок, отраженный в «m-ых частях года» (а не в годах, как ранее). Для того, чтобы вернуться к используемым ранее обозначениям выразим i

и n

через годовые переменные:

i

=i / m, n

= mn.

Последнее соотношение легко интерпретируемо: при сроке n лет количество периодов размером «1/m года» равно mn.

Тогда с использованием годовой процентной ставки итоговую формулу расчета наращенной суммы с использованием сложных процентов с начислением m раз в год можно записать как:

S = P (1 + i / m)

.

Поскольку, как было выяснено, формула сложных процентов с начислением m раз в год верна и для нецелого числа лет n, то и полученная формула верна для нецелого n. Более того, можно показать, что она остается верной и для нецелого m.

Отметим, что всегда предполагается, что сложные проценты начисляются один раз в год, если не указано противное.

Дня того, чтобы продемонстрировать зависимость наращенной суммы от количества начислений m раз в год, сведем в Таблицы 2 и 3 результаты расчетов при Р = 100 руб. и ставке i = 10% в Таблице 2 и ставке i = 25% в Таблице 3.

Дискретное и непрерывное начисление процентов

Зададимся вопросом: как изменится формула начисления процентов, если увеличивать количество m начислений процентов в год.

Например, сначала предполагать, что m = 12, затем 24, 365 (ежедневное начисление), 365*24 (ежечасное) и др. При m, стремящемся к бесконечности, получим непрерывные проценты (проценты с непрерывным начислением):

Сделаем замену z = m / i.

Вспомним, что замечательный предел внутри скобок равен e. Тогда:

S = Pe

.

Обычно годовую ставку начисления непрерывных процентов обозначают ?. Итоговая формула непрерывных процентов выглядит как:


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2 3
На страницу:
3 из 3