Оценить:
 Рейтинг: 0

The Elements of Agriculture

Год написания книги
2018
<< 1 2 3 4 5 6 7 ... 38 >>
На страницу:
3 из 38
Настройки чтения
Размер шрифта
Высота строк
Поля

If analyzed, what does it yield?

How do plants obtain their hydrogen and oxygen?

Let us now consider the three gases, hydrogen, oxygen and nitrogen, which constitute the remainder of the organic part of plants.

Hydrogen and oxygen compose water, which, if analyzed, yields simply these two gases. Plants perform such analysis, and in this way are able to obtain a sufficient supply of these materials, as their sap is composed chiefly of water. Whenever vegetable matter is destroyed by burning, decay, or otherwise, its hydrogen and oxygen unite and form water, which is parted with usually in the form of an invisible vapor. The atmosphere of course contains greater or less quantities of watery vapor arising from this cause and from the evaporation of liquid water. This vapor condenses, forming rains, etc.

Hydrogen and oxygen are never taken into consideration in manuring lands, as they are so readily obtained from the water constituting the sap of the plant, and consequently should not occupy our attention in this book.

NITROGEN

If vegetable matter be destroyed, what becomes of these constituents?

What is the remaining organic constituent?

Why is it worthy of close attention?

Do plants appropriate the nitrogen of the atmosphere?

Nitrogen, the only remaining organic constituent of vegetable matter, is for many reasons worthy of close attention.

1. It is necessary to the growth and perfection of all cultivated plants.

2. It is necessary to the formation of animal muscle.

3. It is often deficient in the soil.

4. It is liable to be easily lost from manures.

Although about four fifths of atmospheric air are pure nitrogen, it is almost certain that plants get no nutriment at all from this source. It is all obtained from some of its compounds, chiefly from the one called ammonia. Nitric acid is also a source from which plants may obtain nitrogen, though to the farmer of less importance than ammonia.

AMMONIA

What is the principal source from which they obtain nitrogen?

What is ammonia?

How is it formed?

Where does it always exist?

How do plants take up ammonia?

Ammonia is composed of nitrogen and hydrogen. It has a pungent smell and is familiarly known as hartshorn. The same odor is perceptible around stables and other places where animal matter is decomposing. All animal muscle, certain parts of plants, and other organized substances, consist of compounds containing nitrogen. When these compounds undergo combustion, or are in any manner decomposed, the nitrogen which they contain usually unites with hydrogen, and forms ammonia. In consequence of this the atmosphere always contains more or less of this gas, arising from the decay, etc., which is continually going on all over the world.

This ammonia in the atmosphere is the capital stock to which all plants, not artificially manured, must look for their supply of nitrogen. As they can take up ammonia only through their roots, we must discover some means by which it may be conveyed from the atmosphere to the soil.

Does water absorb it?

What is spirits of hartshorn?

Why is this power of water important in agriculture?

What instance may be cited to prove this?

Water may be made to absorb many times its bulk of this gas, and water with which it comes in contact will immediately take it up. Spirits of hartshorn is merely water through which ammonia has been passed until it is saturated.[1 - By saturated, we mean that it contains all that it is capable of holding.] This power of water has a direct application to agriculture, because the water constituting rains, dews, &c., absorbs the ammonia which the decomposition of nitrogenous matter had sent into the atmosphere, and we find that all rain, snow and dew, contain ammonia. This fact may be chemically proved in various ways, and is perceptible in the common operations of nature. Every person must have noticed that when a summer's shower falls on the plants in a flower garden, they commence their growth with fresh vigor while the blossoms become larger and more richly colored. This effect cannot be produced by watering with spring water, unless it be previously mixed with ammonia, in which case the result will be the same.

Although ammonia is a gas and pervades the atmosphere, few, if any, plants can take it up, as they do carbonic acid, through their leaves. It must all enter through the roots in solution in the water which goes to form the sap. Although the amount received from the atmosphere is of great importance, there are few cases where artificial applications are not beneficial. The value of farm-yard and other animal manures, depends chiefly on the ammonia which they yield on decomposition. This subject, also the means for retaining in the soil the ammoniacal parts of fertilizing matters, will be fully considered in the section on manures.

Can plants use more ammonia than is received from the atmosphere?

On what does the value of animal manure chiefly depend?

What changes take place after ammonia enters the plant?

May the same atom of nitrogen perform many different offices?

After ammonia has entered the plant it may be decomposed, its hydrogen sent off, and its nitrogen retained to answer the purposes of growth. The changes which nitrogen undergoes, from plants to animals, or, by decomposition, to the form of ammonia in the atmosphere, are as varied as those of carbon and the constituents of water. The same little atom of nitrogen may one year form a part of a plant, and the next become a constituent of an animal, or, with the decomposed dead animal, may form a part of the soil. If the animal should fall into the sea he may become food for fishes, and our atom of nitrogen may form a part of a fish. That fish may be eaten by a larger one, or at death may become food for the whale, through the marine insect, on which it feeds. After the abstraction of the oil from the whale, the nitrogen may, by the putrefaction of his remains, be united to hydrogen, form ammonia, and escape into the atmosphere. From here it may be brought to the soil by rains, and enter into the composition of a plant, from which, could its parts speak as it lies on our table, it could tell us a wonderful tale of travels, and assure us that, after wandering about in all sorts of places, it had returned to us the same little atom of nitrogen which we had owned twenty years before, and which for thousands of years had been continually going through its changes.

Is the same true of the other constituents of plants?

Is any atom of matter ever lost?

The same is true of any of the organic or inorganic constituents of plants. They are performing their natural offices, or are lying in the earth, or floating in the atmosphere, ready to be lent to any of their legitimate uses, sure again to be returned to their starting point.

Thus no atom of matter is ever lost. It may change its place, but it remains for ever as a part of the capital of nature.

CHAPTER IV

INORGANIC MATTER

What are ashes called?

How many kinds of matter are there in the ashes of plants?

Into what three classes may they be divided?

What takes place when alkalies and acids are brought together?

We will now examine the ashes left after burning vegetable substances. This we have called inorganic matter, and it is obtained from the soil. Organic matter, although forming so large a part of the plant, we have seen to consist of four different substances. The inorganic portion, on the contrary, although forming so small a part, consists of no less than nine or ten different kinds of matter.[2 - Bromine, iodine, etc., are sometimes detected in particular plants, but need not occupy the attention of the farmer.] These we will consider in order. In their relations to agriculture they may be divided into three classes—alkalies, acids, and neutrals.[3 - This classification is not strictly scientific, but it is one which the learner will find it well to adopt. These bodies are called neutrals because they have no decided alkaline or acid character.]

Is the character of a compound the same as that of its constituents?

Give an instance of this.

Do neutrals combine with other substances?

Name the four alkalies found in the ashes of plants.
<< 1 2 3 4 5 6 7 ... 38 >>
На страницу:
3 из 38

Другие электронные книги автора George Edwin Waring