Оценить:
 Рейтинг: 0

Метеорологические и геофизические исследования

Год написания книги
2011
Теги
<< 1 ... 6 7 8 9 10 11 12 13 >>
На страницу:
10 из 13
Настройки чтения
Размер шрифта
Высота строк
Поля
(?)

Оценки спектральной функции, приведенные в таблице 4, придают графикам на рис. 5 количественную определенность. В таблице приведены распределения дисперсии по диапазонам межгодовой изменчивости, годового хода и внутригодовой изменчивости с выделением 11 поддиапазонов. Как следует из таблицы 4, более 90 % дисперсии обусловлены годовой и более высокочастотной изменчивостью. Распределение дисперсии между ними различно – в спектрах Т и A явно преобладает годовой ход, в то время как в спектрах Р,

 и N преобладают высокочастотные нерегулярные колебания. В годовом ходе A и N заметна роль

/

-годового и

/

-годового обертонов, а в диапазоне высокочастотных колебаний доминируют процессы внутримесячного и синоптического масштабов.

Таблица 4. Распределение дисперсии по частотным диапазонам (%)

Примечание. Жирным шрифтом выделен диапазон с максимумом дисперсии.

Межгодовая изменчивость МП была проанализирована по данным, обобщённым за одноименные месяцы. При этом годовой ход описывают 12 последовательностей вероятностных характеристик. Поскольку при анализе были использованы не только среднемесячные, но и срочные данные, полученные характеристики относятся также и к масштабу синоптической изменчивости. Распределения вероятностей скалярных величин (Т, Р, N, А, Vmax) представлены на рис. 6 а гистограммами для центральных месяцев календарных сезонов. Для облачности N с учётом погрешности визуального определения принято 3 градации – «ясно» 0–3 балла, «полуясно» 4–7 баллов, «пасмурно» – 8–10 баллов. Годовой ход для Т, Р представлен в таблицах 5, 6 повторяемостью по градациям за все месяцы. В таблице 7 приведен годовой ход оценок моментов и экстремумов распределений по срочным и среднемесячным данным. Как видно из рис. 6 а и таблиц, во все месяцы и сроки распределения МП одномодальные. В то же время характеристики распределений – мода, ширина диапазона изменчивости, асимметричность, заостренность заметно изменяются от месяца к месяцу. Годовой ход особенно четко проявляется у Р и Т как в среднем, так и в дисперсии.

Рис. 6. Оценки характеристик межгодовой изменчивости и годового хода: а – гистограммы (f) повторяемости температуры, давления и облачности в центральные месяцы сезонов; б – многолетний годовой ход температуры и давления в форме «ящиков с усами» по срочным (1) и среднемесячным (2) данным; в – средний многолетний годовой ход балла облачности (3) и повторяемости ясного (4), полуясного (5) и пасмурного (6) неба; г – средний многолетний годовой ход (7) и годовой ход СКО абсолютной влажности по срочным (8) и среднемесячным (9) данным; д – повторяемость годовых экстремумов срочных (9) и среднемесячных (10) значений температуры, давления и скорости ветра по месяцам

В таблице 7 выделены ячейки, для которых распределение отличается от нормального по критериям A?0, E?0. Как видно из таблицы, распределения среднесуточной температуры воздуха в большинстве месяцев имеют положительную асимметрию, наибольшие по модулю значения А, Е отмечаются летом. Распределение среднемесячных значений в большинстве случаев близко к нормальному.

На рис. 6 б годовой ход и межгодовая изменчивость Т и Р представлены квантилями распределения среднесуточных, среднемесячных и среднесезонных данных. Совместное представление квантилей суточного и месячного разрешения в форме «ящиков с усами» демонстрирует большой вклад в изменчивость процессов синоптического масштаба. Из него видно, что годовой ход проявляется не только в среднем, но и в параметрах масштабов распределения (в высоте «ящика» и в длине «усов» для данных как суточного, так и месячного разрешения). Следует отметить, что по этим показателям годовой ход давления проявляется столь же ярко, как и температуры. Заметим также, что для данных суточного разрешения отношение длины «усов» к высоте «ящика» заметно больше, чем для данных месячного разрешения. Соотношение длин верхнего и нижнего усов в ящиках срочных значений температуры летом позволяет утверждать, что особенности коэффициентов А, Е в таблице 7 связаны с аномалиями малой обеспеченности. Действительно, оценки коэффициента асимметрии, приведенные в таблице 8, показывают, что левая асимметрия обусловлена положительными аномалиями обеспеченностью менее 0,1.

Таблица 5. Годовой ход повторяемости среднесуточной температуры воздуха (%)

Таблица 6. Годовой ход повторяемости среднесуточного атмосферного давления (%)

Таблица 7. Годовой ход моментов и экстремумов распределения среднесуточных и среднемесячных значений температуры и давления.

Примечание. Жирным шрифтом выделены значимо не нулевые коэффициенты асимметрии и эксцесса

Таблица 8. Квантильные оценки коэффициента асимметрии среднесуточной температуры в июне

Годовой ход характеристик облачности представлен на рис. 6 в кривыми годового хода среднемесячного многолетнего балла облачности N и повторяемостями ясного, полуясного и пасмурного неба. Как видно из рис., балл общей облачности имеет наименьшие значения в холодное время года и демонстрирует тенденцию к увеличению – в тёплое. Отчетливо выражены два максимума – в мае и в августе-сентябре. Такой же годовой ход у повторяемости пасмурного неба. В тоже время годовой ход ясного и полуясного неба находятся в противофазе (для последнего максимум зимой и минимум летом) и имеет существенно меньший размах.

Для удельной влажности воздуха годовой ход представлен на рис. 6 г графиками m(t) и ?(t), рассчитанной по срочным и среднемесячным данным. Как видно из рис., влажность воздуха резко возрастает в теплый сезон; при этом m(t)>?(t). Для нее, как и для температуры воздуха, характерен значительный вклад в дисперсию регулярного годового хода.

Ещё одной характеристикой годового хода является распределение годовых экстремумов по месяцам, диаграммы которых приведены в первой части рис. 6 д. Наиболее сосредоточенным является распределение max(T), самое размытое распределение имеет min(Р). Максимум V отмечается с октября по март, с максимумом повторяемости в декабре-феврале.

Годовой ход и межгодовая изменчивость скорости ветра представлены на рис. 7 графиками роз ветров, векторов

, эллипсами

 и квантильными диаграммами по месяцам.

В таблице 9 приведены в инвариантной форме оценки моментов, экстремумов распределений и тренды. Анализ роз ветра, приведенных на рис. 7 а и в таблице 9, показывает, что в холодный сезон преобладают Ю – ЮЗ – З ветры, а в теплый сезон – ветры С – СВ направлений. При этом, в отличие от холодного сезона, распределение скорости ветра по румбам в теплый сезон года ближе к равномерному. Повторяемость штиля в холодный сезон в несколько раз выше, чем в теплый. Таким образом, в холодный сезон усилена контрастность – максимальный модуль скорости больше, чем в теплый сезон, но при этом велика также и повторяемость штилей и слабых ветров (V < 3 м/с). В теплый сезон наиболее выражена повторяемость умеренных ветров со скоростью 3?7 м/с.

Оценки годового хода векторов средней скорости и параметров эллипсов СКО (рис. 7 б) подтверждают сделанное выше заключение о том, что в холодный сезон средняя скорость направлена с ЮЮЗ на ССВ, а в теплый сезон в противоположном направлении. При этом увеличение модуля средней скорости в холодный сезон по сравнению с теплым в значительной степени обусловлено большей изменчивостью направления скорости ветра в теплый сезон. Направление и модуль СКО, как следует из таблицы 9, более устойчивы в течение года. Однако и в этих характеристиках наблюдается годовой ход, проявляющейся в зимнем усилении изменчивости. Инвариант I

в холодный сезон составляет от 5.5 до 6.2 м/с, а в теплый – от 3.9 до 5.1 м/с. Форма эллипса СКО в течение года также изменяется. В холодный сезон он вытянут и ориентирован примерно в направлении среднего переноса, а в теплый сезон становится близким к окружности.

Рис. 7. Годовой ход роз повторяемости скорости ветра (а), совмещённых векторов среднего переноса и эллипсов рассеяния (б) и квантильных диаграмм (в)

Изменчивость модуля средней скорости ветра, как векторной величины, обусловлена не только его усилением или ослаблением, но и изменчивостью по направлению. Одной из характеристик вклада последней в общую дисперсию является отношение v =D

/I

. Как следует из таблицы 9, в холодный сезон v =0.70–0.75, а в теплый сезон v =0.25–0.30, что подтверждает вывод о том, что летом относительная роль изменчивости по направлению в величине модуля средней скорости ветра возрастает. Подчеркнем, что сильные и штормовые ветры сосредоточены в относительно узком секторе – от Ю до З, причем штормовые ветры (более 25–30 м/с) – только в ЮЮЗ – ЮЗ секторах. Самые сильные ветры (до 40 м/с) наблюдаются зимой.

Таблица 9. Годовой ход модуля скорости ветра, вектора средней скорости ветра, инварианты тензора СКО по среднесуточным данным, вектора максимальной скорости ветра по срочным данным и параметры векторного тренда по среднемесячным данным

Выше были представлены средние климатические значения основных метеорологических параметров и статистические характеристики изменчивости для всего периода измерений. Рассмотрим теперь их межгодовую изменчивость. На рис. 8 приведены графики изменений среднемесячных значений Т, Р и N и их аппроксимации линейными трендами, годовой ход коэффициентов трендов (б) и их вклад в общую дисперсию (в).

Как видно из рис. 8, для Т и Р знак коэффициента линейного тренда изменяется от месяца к месяцу, во все месяцы тренд слабый, незначимый на 95 % уровне значимости, и объясняет не более 4–6 % общей дисперсии. Следует особо отметить ярко выраженные, значимые в зимний и летний сезоны, тренды балла общей облачности, положительные зимой и отрицательные летом и описывающие в эти сезоны до 30 % дисперсии. При этом согласованность знаков трендов Т и N (оба положительны зимой и имеют противоположные знаки летом) позволяет предположить, что влияние облачности на радиационный прогрев нижнего слоя атмосферы (уменьшение радиационного выхолаживания – зимой и увеличение инсоляции – летом) является одним из основных механизмов положительных трендов температуры воздуха в зимний и летний сезоны года.

Рис. 8. Долгопериодная изменчивость температуры воздуха, приземного давления и балла общей облачности в районе Тикси: а – изменчивость среднемесячных значений для января и июля и их аппроксимация линейными трендами; б – годовой ход коэффициентов тренда (положительный – 1, отрицательный – 2); в – дисперсионный вклад трендов в общую изменчивость МП (незначимый – 3, значимый на 95 % уровне значимости – 4)

Можно также отметить, что, согласно таблице 9, тренд скорости ветра в районе Тикси во все месяцы года слабый и статистически незначимый. В большинстве месяцев обнаружена слабая тенденция усиления южной составляющей скорости ветра.

Приведённые оценки показывают большой вклад процессов синоптического масштаба в климатическую изменчивость. Выше этот диапазон был проанализирован по данным, сгруппированным по одноименным месяцам. В нижеследующем изложении будет уточнён вклад в общую дисперсию годовой ритмики с учётом сезонной модуляции процессов синоптического масштаба и предпринята попытка оценить роль синоптических процессов в формировании многолетних трендов.

Наиболее компактную оценку интенсивности синоптической изменчивости с учётом низкочастотной модуляции можно получить по рядам внутримесячной дисперсии среднесуточных данных D(t

)

, центрированным на среднегодовые значения и годовой ход. На рис. 9 приведены графики отрезков временных рядов D(t

)

для Т и Р и оценки спектров S

(?), указывающие на сильный годовой ход D(t

)

, модулированный в диапазоне межгодовой изменчивости.

Рис. 9. Временные ряды внутримесячной дисперсии среднесуточных данных температуры и давления D(t

)

(а) и соответствующие спектральные плотности (б)

Ряды D(t

)

<< 1 ... 6 7 8 9 10 11 12 13 >>
На страницу:
10 из 13