Другая главная область, к которой применяется дифференциальное исчисление, есть механика; о значении различных степенных функций, которые получаются из элементарных уравнений ее предмета, движения, было уже попутно упомянуто; я прямо принимаю их здесь. Уравнение, т. е. математическое выражение ложно равномерного движения с=s/t или s=ct, в котором пройденные пространства относятся к протекшим временам, как эмпирическая единица с, означающая величину скорости, не дает никакого повода к дифференцированию; коэффициент с уже вполне определен и известен, и относительно него не может иметь места никакое дальнейшее степенное развитие. Как анализируется s=at
, уравнение падения тел, было уже указано; первый член анализа ds/dt=2at понимается и словесно и реально так, что он должен быть членом суммы (каковое представление мы уже устранили), одною частью движения, которому должна быть присуща сила инерции, т. е. ложно равномерной скорости, таким образом, что в бесконечно малые промежутки времени движение совершается равномерно, а в конечные промежутки времени, т. е. в действительности, неравномерно. Конечно f's=2at; значение а и t известно, равно как тем самым положено определение скорости равномерного движения; так как а=s/t
, то вообще 2at=2s/t; но тем самым мы ни мало не приобретаем дальнейшего знания; лишь ложное предположение, что 2at есть часть движения, как суммы, дает здесь ложную видимость физического предложения. Самый множитель а, эмпирическая единица – определенное количество, как таковое – приписывается тяготению; но если пускается в ход категория силы тяготения, то следовало бы скорее сказать, что именно целое s=at
есть действие или, правильнее, закон тяготения. Тому же соответствует и выведенное из ds/dt=2at предложение, что если бы прекратилось действие тяготения, то тело со скоростью, приобретенною в конце своего падения, прошло бы пространство вдвое большее пройденного во время, равное времени его падения. Здесь мы встречаем и саму для себя превратную метафизику; конец падения или конец части времени, в которое падает тело, есть всегда сам еще часть времени; если бы он не был такою частью, то наступил бы покой и следовательно – отсутствие скорости; скорость может быть измеряема лишь по пространству, пройденному в некоторую часть времени, а не в конце ее. Если же, наконец, и в других отраслях физики, которые вовсе не имеют дела с движением, например относительно света (за исключением того, что называется его распространением в пространстве) и количественных определений цветов, прибегают к приложению дифференциального исчисления, и первая производная функция квадратной функции именуется и здесь скоростью, то на это следует смотреть как на еще более неуместный формализм вымышляемого существования.
Движение, изображаемое уравнением s=at
, мы находим, говорит Лагранж, на опыте в падении тел; простейшее следующее движение должно бы было иметь уравнение s=ct
, но в природе такого движения не оказывается; мы не знаем, что мог бы означать коэффициент с. Как бы то ни было, есть однако движение, уравнение которого есть s
=at
– кеплеров закон движения тел солнечной системы; вопрос о том, что должна означать здесь первая производная функция 2at/3s
, и дальнейшее прямое исследование этого уравнения через дифференцирование, нахождение законов и определений этого абсолютного движения с той исходной точки зрения должно бы конечно явиться интересною задачею, в решении которой анализ проявил бы себя в достойном блеске.
Таким образом для себя приложение дифференциального исчисления к элементарным уравнениям движения не представляет никакого реального интереса; формальный же интерес обусловливается общим механизмом исчисления а. Но иное значение получает разложение движения в отношении определения его траектории; если последняя есть кривая, и ее уравнение содержит высшие степени, то требуется переход от прямолинейных функций возвышения в степень к самим степеням, и поскольку первые должны быть выведены из первоначального уравнения движения, содержащего фактор времени, с устранением времени, то этот фактор должен быть ограничен теми низшими функциями, из коих могут быть получены эти уравнения линейных определений. Эта сторона затрагивает интерес другой части дифференциального исчисления.
Предыдущее изложение имело целью выяснить и установить простое специфическое определение дифференциального исчисления и привести тому некоторые элементарные примеры. Это определение оказалось состоящим в том, что для уравнения степенной функции находится коэффициент, так наз. первая (производная) функция, и что то отношение, которое она собою представляет, обнаруживается в моментах конкретного предмета, причем полученным таким образом равенством между обоими отношениями определяются сами эти моменты. Равным образом надлежит по поводу принципа интегрального исчисления вкратце рассмотреть, что получается для его специфического конкретного определения из его приложения. Взгляд на это исчисление упрощается и исправляется уже тем, что оно не признается более методом суммирования, как оно было названо в противоположность дифференцированию, существенным ингредиентом которого считается приращение, чем оно вводилось в существенную связь с формою ряда. Задача интегрального исчисления прежде всего столь же теоретическая или скорее формальная, как и дифференциального исчисления, но при этом обратная последнему; в первом случае исходят от функции, которая рассматривается, как производная, как коэффициент первого возникающего через развитие еще неизвестного уравнения члена, и через нее должна быть найдена первоначальная степенная функция; та функция, которая в естественном порядке развития рассматривается как первоначальная, здесь имеет характер производный, а та, которая ранее считалась производною, есть здесь данная или вообще первоначальная. Формальная сторона этого действия является уже предрешенною дифференциальным исчислением, так как последнее вообще установляет переход и отношение первоначальной функции к возникающей путем ее развития. Если при этом отчасти для того, чтобы подставить ту функцию, от которой должно исходить, отчасти для осуществления перехода ее к первоначальной функции во многих случаях оказывается необходимым прибегнуть к форме ряда, то нужно прежде всего твердо помнить, что эта форма, как таковая, не имеет никакой непосредственной связи с собственным принципом интегрирования.
Но другою стороною задачи этого исчисления является с точки зрения формального действия его приложение. Последнее и является само задачею узнать – в вышеуказанном смысле – то значение, которое свойственно первоначальной функции, рассматриваемой с точки зрения данной функции, принимаемой за первую (производную) и относимой к особому предмету. Само по себе это учение могло бы, по-видимому, войти вполне в состав дифференциального исчисления; но есть дальнейшее обстоятельство, вследствие которого дело оказывается не так просто. Именно поскольку в этом исчислении оказывается, что в производной функции уравнения кривой получается линейное отношение, то тем самым признается, что интегрирование этого отношения дает уравнение кривой в отношении абсциссы и ординаты; или если дано уравнение кривой поверхности, то дифференцирование уже научает значению производной функции такого уравнения, именно что в этой функции ордината представляет функцию абсциссы, стало быть, уравнение кривой линии.
Но тут возникает вопрос, какой из моментов, определяющих предмет, дан в самом уравнении, ибо аналитическое исследование может исходить лишь от данного а и от него переходить к прочим определениям предмета. Дано, например, не уравнение кривой поверхности а, или происходящего через ее вращение тела, или ее дуга, но лишь отношение абсциссы и ординаты в уравнении самой кривой линии. Переходы от таких определений к этому уравнению не составляют поэтому предмета дифференциального исчисления, найти такие отношения есть дело интегрального исчисления.
Но, далее, было уже показано, что дифференцирование уравнения с многими переменными величинами дает развитие степени или дифференциальные коэффициенты, не как уравнение, а только как отношение; задача состоит в том, чтобы в моментах предмета найти для этого отношения, которое есть производная функция, другое равное ему. Напротив, предмет интегрального исчисления есть самое отношение первоначальной к производной в этом случае данной функции, и задача состоит в том, чтобы выяснить значение искомой первоначальной функции в предмете данной производной или, правильнее, так как это значение, например, кривая поверхность или выпрямляемая, представляемая прямою кривая линия и т. п., уже высказано в задаче, в том, чтобы показать, что такое определение может быть найдено через некоторую первоначальную функцию, а также какой момент предмета должен быть принят для исходной (производной) функции.
Обычный метод, пользующийся представлением бесконечно малой разности, легко справляется с делом; для квадратуры кривой он принимает бесконечно малый прямоугольник, произведение ординаты на элемент, т. е. на бесконечно малую часть абсциссы, за трапецию, имеющую одною своею стороной бесконечно малую дугу, противоположную сказанной бесконечно малой части абсциссы; это произведение и интегрируется в том смысле, чтобы интеграл суммы бесконечно многих трапеций дал искомую поверхность, т. е. конечную величину ее элемента. Точно также он образует из бесконечно малой дуги и соответствующих ей ординаты и абсциссы прямоугольный треугольник, в котором квадрат этой дуги считается равным сумме квадратов обоих других бесконечно малых, интегрирование которых и дает конечную дугу.
Этот прием опирается, как на свое предположение, на то общее открытие, которое лежит в основе этой отрасли анализа, имеющее здесь тот смысл, что квадратура кривой, выпрямленная дуга и т. д. находятся к известной данной в уравнении кривой функции в отношении так наз. первоначальной функции к производной. Задача состоит в том, чтобы узнать, если известная часть математического предмета (напр., кривой линии) принимается за производную функцию, какая другая его часть выражается соответствующею первоначальною функциею. Известно, что если данная в уравнении кривой функция ординаты принимается за производную функцию, то соответственная ей первоначальная функция есть выражение величины отрезанной этою ординатою и кривою плоскости, что если принимается за производную функцию известное определение касательной, то первоначальная функция выражает величину соответствующей этому определению дуги и т. д.; но что эти отношения – одно первоначальной функции к производной, и другое величин двух частей или атрибутов математического предмета – образуют пропорцию, узнать и доказать этого не считает нужным тот метод, который пользуется бесконечно малыми и механическими действиями над ними. Является уже своеобразною заслугою остроумия нахождение вне уже известных результатов того, что некоторые и именно такие-то стороны математического предмета находятся в отношении первоначальной и производной функции.
Из этих обеих функций производная или, как она была определена, функция возвышения в степень, есть в интегральном исчислении данная; а первоначальная должна быть выведена из нее путем интегрирования. Но первая дана не непосредственно, равно как не дано для себя, какую часть математического предмета следует считать за производную функцию, дабы через приведение ее к первоначальной найти другую часть или определение требуемой задачею величины. Обычный – метод, который, как сказано, сейчас же представляет известные части предмета, как бесконечно малые, в форме производной функции, находимой через дифференцирование первоначально данного уравнения предмета (напр., при выпрямлении кривой бесконечно малые абсциссы и ординаты), но зато принимает такие части, которые можно привести в связь с предметом задачи (в примере дуги), представляемом так же, как бесконечно малый, установленную элементарною математикою, вследствие чего, если эти части известны, то определяется и та часть, величина которой есть искомое; так, для выпрямления кривой пользуются вышеуказанными тремя бесконечно малыми, соединяемыми в уравнение прямоугольного треугольника, для ее квадратуры – ординатою, соединяемою с бесконечно малыми абсциссою в произведение, причем поверхность совершенно арифметически считается произведением линий. Переход от таких так называемых элементов поверхности, дуги и т. п. к величине самих поверхностей, дуги и т. п., считается затем лишь восхождением от бесконечного выражения к конечному или суммою бесконечно многих элементов, из которых должна состоять искомая величина.
Можно поэтому сказать лишь поверхностно, что интегральное исчисление есть только обратная, но вообще более трудная проблема дифференциального исчисления; реальный же интерес интегрального исчисления направляется напротив исключительно на взаимное отношение первоначальной и производной функции в конкретных предметах.
Лагранж и в этой части исчисления приложил столь же мало старания к разрешению трудности проблемы простым способом, основанным на этих прямых предположениях. Для разъяснения сущности дела полезно привести небольшое число примеров с целью ближайшего ознакомления с его приемом. Он ставит себе задачею доказать для себя, что между частными определениями некоторого математического целого, напр., кривой линии, существует отношение первоначальной к производной функции. Но этого нельзя достигнуть в рассматриваемой области прямым путем, основанным на природе самого отношения, которое в математическом предмете приводит в связь кривые линии с прямыми, линейные протяжения и их функции с поверхностными протяжениями и их функциями и т. д., т. е. качественно различное: поэтому определение можно понимать, лишь как средину между большим и меньшим. Тем самым мы вновь возвращаемся к форме приращения с + и —, и бодрое: dеveloppons вступает в свою силу; но уже ранее было указано, что приращения имеют здесь лишь арифметическое, конечное значение. Из соображения того условия, что искомая величина более, чем один легко находимый предел, и менее, чем другой, выводится, например, что функция ординаты есть первая производная функция функции плоскости.
Выпрямление прямых по способу Лагранжа, исходящего при этом от принципа Архимеда, представляет тот интерес, что оно обнаруживает нам перевод архимедова метода на язык нового анализа, что позволяет бросить взгляд на внутренний и истинный смысл механически производимого другим путем действия. Этот способ по необходимости аналогичен вышеуказанному способу; архимедов принцип, по которому дуга кривой более, чем соответствующая ей хорда, и менее, чем сумма двух касательных, проведенных к конечным точкам дуги, поскольку она заключена между этими двумя точками и точкою пересечения касательных, не дает прямого уравнения. Переводом этого архимедова основного определения в новую аналитическую форму служит изобретение такого выражения, которое должно быть для себя простым основным уравнением, так как эта форма ставит лишь требование движения в бесконечность между большим и меньшим, постоянно сохраняющими определенную величину, каковой переход постоянно дает лишь новые большее и меньшее, хотя во все более тесных пределах. При помощи формализма бесконечно малых сейчас же получается уравнение dz
=dx
+dy
. Изложение Лагранжа, исходящее от вышеуказанного основоположения, обнаруживает напротив, что величина дуги есть первоначальная функция некоторой производной функции, характеризующий которую член сам есть функция отношения производной функции к первоначальной функции ординаты.
Так как в способе Архимеда так же, как впоследствии в кеплеровом исследовании предметов стереометрии, выступает представление бесконечно малых, то это часто служило авторитетом для такого употребления этого представления, какое делается в дифференциальном исчислении, без принятия в соображение имеющих тут место своеобразия и различия. Бесконечно малое означает прежде всего отрицание определенного количества, как такового, т. е. так называемого конечного значения, законченной определенности, присущей определенному количеству, как таковому.
Также и в последующих знаменитых методах Валериуса, Кавальери и др., основанных на рассмотрении отношений геометрических предметов, то основное определение, по которому определенное пространство, как таковое, поставлено для этой цели в ряд с определениями, рассматриваемыми ближайшим образом, лишь как отношения, и они должны быть поэтому признаваемы за неимеющие величины (nicht-grosses). Ho тем самым не признается и не выдвигается то утвердительное, которое находится за просто отрицательным определением, и которое ранее оказалось, говоря отвлеченно, качественною определенностью величины, состоящею более определенным образом в степенном отношении; отчасти же, поскольку это отношение само опять-таки включает в себе множество ближе определенных отношений, как, например, степени и функции ее развития, то они вновь должны быть обоснованы на общем и отрицательном определении того же бесконечно малого и выведены из него. В вышеприведенном изложении Лагранжа найдено то определенное утвердительное, которое свойственно архимедову способу изложения задачи, а тем самым приведен в свои надлежащие пределы прием, коему было присуще движение в бесконечность. Величие нового изобретения для себя и его способность разрешать до того времени неразрешимые задачи, а ранее разрешимые разрешать более простым способом, должны быть приписаны исключительно открытию отношения первоначальной к производной функции и тех частей математического целого, которые состоят в таком отношении.
Приведенных соображений достаточно для того, чтобы выяснить то своеобразие в отношении величин, которое составляет предмет рассматриваемого ныне особого вида исчисления. Эти соображения можно было ограничить простыми задачами и способами их решения; и не соответствовало бы ни цели определения понятия, которое имелось здесь единственно в виду, ни силам автора обозреть весь объем т. наз. приложения дифференциального и интегрального исчисления и распространить индукцию, лежащую в основе указанного ею принципа, на все задачи и их решения. Но изложенное достаточно показало, что как каждому особому способу исчисления свойственна особая определенность или особое отношение величины к его предмету, и что как этот особый способ составляет сложение, умножение, возвышение в степень и извлечение корня, исчисление логарифмов и рядов и т. п., так то же справедливо о дифференциальном и интегральном исчислении; для того, что относится к этому исчислению, всего уместнее было бы название отношения степенной функции и функции ее развития или возвышения в степень, так как оно всего ближе к пониманию природы дела. Но как действие по другим отношениям величины, напр., сложение и т. п., также вообще употребляется при этом исчислении, так к нему применяются и логарифмы, отношения окружности и ряды в особенности для того, чтобы сделать удобнее выражение при потребных действиях вывода первоначальных из производных функций.
С формою ряда дифференциальное и интегральное исчисление вообще имеет ближайший общий интерес определения тех развиваемых функций, которые в рядах именуются коэффициентами членов; но между тем как интерес этого исчисления простирается лишь на отношение первоначальной функции к ближайшему коэффициенту ряда, ряд стремится найти сумму множества членов, расположенного по порядку степеней, с коим связаны эти коэффициенты. Бесконечное, присущее бесконечному ряду, неопределенное выражение отрицания определенного количества вообще, не имеет ничего общего с утвердительным определением, присущим бесконечному этого исчисления. Равным образом бесконечно малое, как приращение, посредством которого развитие принимает форму ряда, есть лишь внешнее средство этого развитие, и его так называемой бесконечности принадлежит лишь значение не иметь никакого значения, кроме значения такого средства; ряд, поскольку он в действительности не есть то, что от него требуется, приводит к некоторой прибавке, вновь отбросить которую есть излишний труд. Этим затруднением обременен и метод Лагранжа, который вновь прибег по преимуществу к форме ряда; хотя именно в этом методе чрез то, что наименовано приложением, проявляется истинное своеобразие, так как вместо того, чтобы втеснять формы dx, dy и т. д. в самые предметы, им указываются прямо те части, коим в них самих свойственна определенность производных функций (функций развития), и тем самым оказывается, что форма ряда не есть здесь то, о чем идет дело[21 - В вышеупомянутой критике (Jahrbuch f?r wis. Krit. B. II. 1827. № 155, 6 и сл.) находятся интересные заявления основательного специалиста Г. Шпера (Spehr), почерпнутые из его Neuen Principien des Fluentencalculs. Braunschw. 1826, касающиеся именно обстоятельства, существенно способствующего внесению в дифференциальное исчисление темноты и ненаучности, и согласующиеся сверх того с тем, что было сказано об общей теории этого исчисления: «чисто арифметические исследования, говорится там, которые, правда, из числа всех подобных имеют ближайшее отношение к дифференциальному исчислению, не отделили от него, как такового, а напротив, признали эти исследования, как напр., Лагранж, за самую суть дела, считая ее лишь их приложением. Эти арифметические исследования касаются правил дифференцирования, вывода теоремы Тейлора и т. п., даже различных способов интегрирования. Между тем совершенно наоборот, эти приложения именно и составляют предмет собственно дифференциального исчисления, а все эти арифметические развития и действия оно предполагает из анализа». Было указано, каким образом у Лагранжа отделение т. наз. приложения от приема общей части, исходящего от рядов, служит именно к тому, чтобы выставить своеобразный предмет дифференциального исчисления. Но ввиду интересного мнения автора, что т. наз. приложения именно и составляют предмет собственно дифференциального исчисления, представляется странным, что он мог вдаться в формальную (приведенную там же) метафизику непрерывной величины, становления, течения и т. д. и даже пожелать еще более умножить этот балласт; эти определения формальны, так как они суть лишь общие категории, не касающиеся именно специфической стороны дела, которая познается и отвлекается из конкретных учений, из приложений.].
Примечание 3-е
Еще другие формы, связанные с качественною определенностью величины
Бесконечно малое дифференциального исчисления есть в своем утвердительном смысле качественная определенность величины, о которой будет далее сказано, что она в этом исчислении рассматривается не только вообще, но на особенном отношении степенной функции к функции ее развития. Но эта качественная определенность является еще в дальнейшей, так сказ., слабейшей форме, и последняя, равно как связанное с нею употребление бесконечно малых и их смысл при таком употреблении, должны быть рассмотрены в настоящем примечании.
Исходя из вышеизложенного, мы должны в этом отношении припомнить, что различаемые степенные определения с аналитической стороны проявляются прежде всего, как формальные и совершенно однородные, что они означают числовые величины, не имеющие, как таковые, качественного различия одна от другой. Но в приложении к пространственным предметам аналитическое отношение обнаруживается вполне в своей качественной определенности, как переход от линейных к плоскостным определениям, от прямолинейных к криволинейным и т. д. Далее это приложение приводит к тому, что пространственные предметы, данные по их природе в форме непрерывных величин, понимаются дискретно, – плоскость, как множество линий, линия, как множество точек и т. д. Единственный интерес такого разложения состоит в определении самых точек, на которые разлагается линия, линий, на которые разлагается плоскость и т. д., дабы от такого определения подвигаться далее аналитически, т. е. собственно арифметически; эти исходные пункты суть элементы искомых определений величины, из которых (элементов) должны быть выведены функция и уравнение для конкретного, для непрерывной величины. Для решения задач, в коих по преимуществу обнаруживается интерес к употреблению этого приема, требуется в качестве исходного элемента нечто определенное для себя самого в противоположность непрямому ходу решения, поскольку последний может начинать лишь с пределов, между которыми лежит то определенное для себя, которое служит ему целью. Результаты обоих методов совпадают, если только может быть найден закон дальнейшего процесса определения при отсутствии возможности достигнуть полного, т. е. т. наз. конечного определения. Кеплеру приписывается честь впервые придти к мысли такого обратного приема и принятие дискретного за исходный пункт. Объяснение того, как он понимает первое предложение архимедова измерения круга, выражает это очень просто. Первое предложение Архимеда состоит, как известно, в том, что круг равен прямоугольному треугольнику, один катет которого есть радиус, а другой равен длине окружности. Находя смысл этого предложения в том, что окружность круга содержит столько же частей, как точек, т. е. бесконечно много, из коих каждая может считаться основанием равнобедренного треугольника и т. д., Кеплер выражает тем самым разложение непрерывного в форму дискретного. Встречающееся здесь выражение бесконечное еще очень далеко от того определения, какое дается ему в дифференциальном исчислении. Если для таких дискретных частей найдена определенность, функция, то они должны быть далее соединены, служить элементами непрерывного. Но так как никакая сумма точек не образует линию, никакая сумма линий не образует плоскости, то точки уже изначала принимаются за линейные, а линии – за плоскостные. Умножение линий на линии представляется сначала чем-то бессмысленным, т. к. умножение вообще производится над числами, т. е. есть такое их изменение, при котором то, во что они переходят, совершенно однородно с произведением, есть изменение только величины. Напротив, то, что называется умножением линии, как таковой, на линию – т. е. ductus liniae in liniam или plani in planum, которое есть также ductus puncti in lineam – есть изменение не только величины, но последней, как качественного определения пространства, как измерения; переход линии в плоскость должен быть понимаем, как выход из себя, поскольку выход из себя точки есть линия, плоскости – полное пространство. То же самое получается, когда представляют себе, что движение точки образует линию и т. д.; но движение подразумевает определение времени и потому является в этом представлении лишь более случайным, внешним изменением состояния; между тем под выходом из себя должно понимать определенность понятия, качественное изменение – выражаясь арифметически, умножение – единицы (как точки и т. п.) в определенное число (линию и т. п.). При этом следует еще заметить, что при выходе из себя площади, который является как бы умножением площади на площадь, оказывается, по-видимому, различие между арифметическим и геометрическим произведением, так как выход из себя площади, как ductus plani in planum, арифметически дает умножение второго измерения на второе, т. е. произведение четырех измерений, геометрически понижаемое, однако, до трех. Насколько число с одной стороны, так как оно имеет своим принципом единицу, дает прочное определение внешнему количественному, настолько же произведение его формально; как числовое определение, 3*3, умноженное само на себя, есть 3*3*3*3; но та же величина, умноженная на себя, как определение площади, удерживается на 3*3*3, так как пространство, представляемое, как выход за себя точки, отвлеченного предела, имеет свой истинный предел, как конкретную определенность линии, в третьем измерении. Это различие могло бы оказаться действительным в свободном движении, в котором одна, пространственная сторона определяется геометрически, а другая, временная, арифметически (в кеплеровом законе s
:t
).
В чем состоит различие рассматриваемого здесь качественного от предмета предыдущего примечания, ясно само собою и без дальнейшего объяснения. В последнем качественное заключалось в степенной определенности; здесь же оно, как бесконечно малое, есть лишь множитель относительно произведения, точка относительно линии, линия относительно плоскости и т. д. Качественный же переход от дискретного, на которое представляется разложенным непрерывное, к непрерывному, осуществляется, как суммирование.
Но что кажущееся простое суммирование в действительности содержит в себе умножение, т. е. переход от линейного к плоскостному определению, это обнаруживается всего проще в том способе, каким, например, доказывается, что площадь трапеции равна произведению суммы ее параллельных сторон на половину высоты. Эта высота представляется, лишь как определенное число множества дискретных величин, которые должны быть суммированы. Эти величины суть линии, лежащие параллельно между теми двумя ограничивающими параллельными линиями; их бесконечно много, так как они должны заполнять площадь, но они суть линии и потому, чтобы быть чем-либо плоскостным, они должны быть положены с отрицанием. Для того, чтобы избегнуть затруднения, состоящего в том, что сумма линий должна составить площадь, линии принимаются также за площади, но за бесконечно тонкие, так как они имеют свое определение исключительно в линейном параллельных сторон трапеции. Как параллельные и ограниченные другою парою прямолинейных сторон трапеции, они могут считаться членами арифметической прогрессии, показатель которой остается равным, но не нуждается в определении, а первый и последний члены которой суть обе параллельные стороны; сумма такого ряда равна, как известно, произведению этих параллельных на половину числа членов. Это последнее количество называется числом лишь по сравнению с бесконечно многими линиями; оно есть вообще определенность непрерывной величины – высоты. Ясно, что то, что называется суммою, есть вместе с тем ductus lineae in lineam, умножение линии на линии, что по вышеприведенному определению предполагает их плоскостной характер. В простейшем случае прямоугольника каждый из множителей ab есть простая величина, но уже в дальнейшем также еще элементарном примере трапеции лишь один из множителей есть простая величина половины высоты, другая же определяется через прогрессию; он также есть линейное, но определенность его величины важнее; поскольку она может быть изображена лишь посредством ряда, то ее аналитический, т. е. арифметический интерес, состоит в ее суммировании; но геометрический момент последнего есть умножение, качественный переход от линейного к плоскостному измерению; один из множителей принимается за дискретный в связи с арифметическим определением другого, и, как последний, есть для себя линейная величина.
Прием, состоящий в том, чтобы представлять площади, как суммы линий, употребляется, однако, часто и тогда, когда для достижения результата не применяется умножение, как таковое. Так поступают в тех случаях, когда является надобность найти величину, как определенное количество не из уравнения, а из пропорции. Например, что площадь круга относится к площади эллипса, большая ось которого равна диаметру этого круга, как большая ось к малой, доказывается, как известно, так, что каждая из этих площадей принимается за сумму принадлежащих ей ординат; каждая ордината эллипса относится к соответствующей ординате круга, как малая ось к большой, из чего заключают, что также относятся между собою и суммы ординат, т. е. площади. Если желают при этом избегнуть представления площади, как суммы линий, то прибегают к обычному совершенно излишнему вспомогательному средству – к трапециям бесконечно малой ширины; так как уравнение есть лишь пропорция, то при этом установляется сравнение лишь одного из двух линейных элементов площади. Другой, ось абсцисс, принимается в круге и эллипсе за равный, след. как множитель арифметического определения величины за =1, и поэтому пропорция оказывается зависящей всецело от отношение лишь одного определяющего момента.
Для представление площади требуются два измерения; но определение величины, даваемое в этой пропорции, касается исключительно одного момента; поэтому та прибавка или поправка, что представление суммы связывается лишь с этим одним моментом, есть собственно игнорирование того, что здесь требуется для математической определенности.
То, что здесь сказано, служит также критерием для вышеупомянутого метода неделимых Кавальери, находящего тут свое оправдание и не требующего помощи бесконечно малого. Эти неделимые при рассмотрении площадей суть линии, при рассмотрении пирамиды или конуса и т. д. квадраты, площади кругов; принимаемую за определенную основную линию или площадь он называет правилом; это постоянная величина и в ряду есть первый или последний член; сказанные неделимые параллельны ей, следовательно по отношению к фигуре определяются одинаково.
Общее основоположение Кавальери состоит в том (Exerc. geometr. VI – позднейшее сочинение Exerc. I, стр. 6), что все как плоские, так и телесные фигуры находятся в отношении к этим неделимым, что они могут быть сравниваемы между собою коллективно, а если в них есть какое-либо общее отношение, то и дистрибутивно. Для этой цели он в фигурах, имеющих равные основание и высоту, сравнивает отношения между линиями, проведенными параллельно им и на равном расстоянии от них; все такие определения некоторой фигуры имеют одинаковое определение и образуют собою весь ее объем. Таким путем Кавальери доказывает, например, и ту элементарную теорему, что при равных высотах площади параллелограммов относятся, как их основания; каждые две линии, одинаково отстоящие от основания и параллельные ему, проведенные в обеих фигурах, относятся к основаниям так же, как целые фигуры. В действительности линии не составляют объема фигуры, понимаемой как непрерывная, но суть этот объем, поскольку он определяется арифметически; линейное есть его элемент, посредством которого единственно постигается его определенность.
Мы пришли теперь к рефлексии над различением, имеющем место относительно того, в чем состоит определенность какой-либо фигуры, именно поскольку эта определенность имеет или такой характер, как в данном случае высота фигуры, или характер ее внешней границы. Если она есть внешняя граница, то допускается, что непрерывность фигуры, так сказать, следует за равенством или отношением границы; напр., равенство совпадающих фигур основывается на совпадении ограничивающих их линий. Ho y параллелограммов с одинаковыми высотою и основанием лишь последняя определенность есть внешняя граница; высота же, непараллельность вообще, на которой основывается второе главное определение фигур, их отношение, присоединяет к внешней границе второй принцип определения. Евклидово доказательство равенства параллелограммов, имеющих одинаковые высоту и основание, приводит их к треугольникам, к внешне ограниченному непрерывному; в доказательстве же Кавальери, и прежде всего в доказательстве пропорциональности параллелограммов, граница есть определенность величины, как таковая вообще, которая обнаруживается в каждой паре линий, проведенных в обеих фигурах на одинаковом расстоянии. Равные или состоящие в равном отношении с основанием линии, взятые коллективно, дают состоящие в равном отношении фигуры. Представление агрегата линий противоречит непрерывности фигуры; но рассмотрение линий вполне исчерпывает ту определенность, о которой идет речь. Кавальери часто отвечает на то возражение, что представление неделимых еще не приводит к тому, чтобы можно было сравнивать между собою бесконечные по числу линии или плоскости (Geom. lib. II prop. 1 Schol.): он правильно указывает на то различие, что он сравнивает не их число, которого мы не знаем – т. е. которое правильнее, как было замечено, есть пустое вспомогательное представление, – но лишь величину, т. е. количественную определенность, как таковую, которая равна занимаемому этими линиями пространству; так как оно заключено в границы, то и эта величина заключена в те же границы; непрерывное есть не что иное, как само неделимое, говорит он; если бы первое было вне последнего, то оно было бы несравнимо; но было бы нелепо сказать, что ограниченные непрерывные несравнимы между собою.
Как видно, Кавальери желает отличать то, что принадлежит к внешнему существованию непрерывного, от того, в чем состоит его определенность, и что возвышается над последним лишь для сравнения и для цели теоремы. Правда, те категории, которыми он при этом пользуется, говоря, что непрерывное сложено или состоит из неделимых и т. п., недостаточны, так как при этом вместе с тем принимается в соображение представление непрерывного или, как сказано выше, его внешнее существование; вместо того, чтобы сказать, что «непрерывное есть не что иное, как само неделимое», было бы правильнее и тем самым само для себя ясно сказать, что определенность величины непрерывного такова же, как и самого неделимого. Кавальери не увлекается ложным выводом, будто бесконечное может быть более или менее, выводом, делаемым школою из того представления, что неделимые составляют непрерывное, и выражает далее (Geom. lib. VII praef.) более определенное сознание того, что его способ доказательства нисколько не принуждает представлять себе непрерывное сложенных из неделимых; непрерывные величины лишь пропорциональны неделимым. Он берет агрегаты неделимых не так, чтобы они подпадали определению бесконечности, не ради получения бесконечного множества линий или плоскостей, но поскольку им в них самих принадлежит определенное свойство и природа ограниченности. Но чтобы удалить и эту видимость затруднения, он не уклоняется от труда еще и в нарочно прибавленной того для седьмой книге доказать главные положения своей геометрии таким способом, который остается свободным от примеси бесконечности. Этот способ сводит доказательства к вышеупомянутой обычной форме наложения фигур одной на другую, т. е., как было замечено, к представлению определенности, как внешней пространственной границы.
Относительно этой формы наложения можно ближайшим образом сделать еще то замечание, что она есть вообще, так сказать, детское вспомогательное средство чувственного воззрения. В элементарных теоремах о треугольниках представляют их два рядом, и поскольку в каждом из них из шести частей известные три принимаются равными соответствующим трем другого треугольника, доказывается, что эти треугольники совпадают, т. е. что каждый из них имеет равными с другим и прочие три части, так как они вследствие равенства первых трех частей совпадают между собою. Выражаясь отвлеченнее, можно сказать, что вследствие этого равенства каждой пары соответствующих частей обоих треугольников они образуют лишь один треугольник, в котором три части уже определены, откуда следует определенность и прочих частей. Таким образом определенность (треугольника) является уже завершенною в трех его частях; для определенности, как таковой, прочие три части оказываются таким образом избытком, избытком чувственного существования, т. е. воззрения непрерывности. Выражаемая в такой форме качественная определенность выступает в своем различии от того, что предлежит воззрению, целого, как непрерывного внутри себя; наложение не возводит этого различия в сознание.
С параллельными линиями и параллелограммами связано, как было замечено, новое обстоятельство, касающееся отчасти равенства одних углов, отчасти высоты фигур, причем от последних отличаются их внешние границы, стороны параллелограмма. При этом обнаруживается двусмысленность, так как для этих фигур, кроме определенности одной стороны, основания, которое есть внешняя граница, за другую определенность нужно брать другую внешнюю границу, а именно другую сторону параллелограмма или высоту. Если даны две такие фигуры, имеющие одинаковые основание и высоту, из коих одна прямоугольная, другая же очень косоугольная, образующая с первою очень тупой угол, то образ второй легко может показаться более, чем образ первой, так как для второго определяющею служит данная большая сторона, а по мнению Кавальери площади сравниваются по множеству параллельных линий, коими они пересечены; большая же сторона может считаться возможностью большего числа линий, чем сторона прямоугольника. Но это представление не может служить возражением против метода Кавальери; ибо сравниваемое в обоих параллелограммах множество параллельных линий предполагает вместе с тем равенство их расстояний одной от другой, откуда следует, что вторым определяющим моментом служит именно высота, а не вторая сторона параллелограмма. Но далее это изменяется, если сравниваются между собою два параллелограмма, имеющие равные основания и высоты, но лежащие в разных плоскостях и образующие с третью плоскостью разные углы; здесь параллельные отрезки, возникающие тогда, когда их пересекают третьею плоскостью и представляют ее себе движущеюся параллельно ей самой, уже не одинаково удалены один от другого, и эти две плоскости неравны. Кавальери тщательно различает эти два случая, определяя их, как transitus rectus и transitus obliquus неделимых (как в Exercit. I n. XII и сл., так и в Geom. I, II), и тем самым отрезает путь к недоразумению, которое могло бы возникнуть с этой стороны. Я припоминаю, что Барроу в своем вышеприведенном сочинении (Lect. geom. II, стр. 21), хотя он также пользуется методом еделимых, но искажает его и нарушает его чистоту через переданное им его ученику Ньютону и прочим современным ему математикам, в том числе Лейбницу, признание равномерности криволинейного треугольника, напр. т. наз. характеристического, с прямолинейным, поскольку оба они бесконечно – т. е. очень – малы, приводит направленное против того возражение Таке, также прибегавшего к новым методам остроумного геометра. Указываемое последним затруднение касается также вопроса о том, какая линия, и именно при вычислении конических и сферических поверхностей, должна быть принимаема для применения основанных на дискретном соображений. Таке возражает против метода неделимых, что при вычислении поверхности прямого конуса по этому атомистическому методу треугольные сечения конуса представляются образованными прямыми линиями, параллельными основанию и перпендикулярными к оси, которые суть вместе радиусы кругов, из коих (кругов) состоит поверхность конуса, Но если эта поверхность определяется, как сумма окружностей, а эта сумма зависит от числа их радиусов, т. е. длины оси конуса, его высоты, то получаемый результат противоречит найденной и доказанной Архимедом истине. Барроу возражает на это, что при определении поверхности не ось конуса, но его образующая должна быть принимаема за ту линию, вращение которой производит эту поверхность, и которая поэтому – а не ось – должна считаться определенностью величины для множества окружностей.
Такие возражения и неточности имеют свой источник исключительно в употребляемом тут неопределенном представлении бесконечного множества точек, из которых считается состоящею линия, или линий, из которых считается состоящею площадь; этим представлением затемняется существенная определенность величины линии или площадей. Целью настоящих примечаний было указать на те утвердительные определения, которые при различном употреблении бесконечно малых в математике остаются, так сказать, на заднем плане, и вывести их из той туманности, к которой приводит исключительно отрицательное понимание этой категории. В бесконечном ряду, напр., в архимедовом измерении круга, смысл бесконечности состоит лишь в том, что известен закон развития определения, хотя так называемое конечное, т. е. арифметическое выражение, не дано, и отожествление дуги с прямою линиею не может быть осуществлено; эта их несоизмеримость есть их качественное различие. Качественное различие дискретного и непрерывного вообще также содержит в себе отрицательное определение, вследствие которого они являются несоизмеримыми, и приводит к бесконечному в том смысле, что непрерывное, принимаемое за дискретное, не должно более быть определенным количеством по своей определенности, как непрерывного. Непрерывное, которое арифметически должно быть принимаемо за произведение, тем самым полагается, как дискретное, в нем самом, и разлагается, как на элементы, на свои множители; в них заключается определенность его величины; но именно потому, что они суть эти множители или элементы, они принадлежат к низшему измерению, и, поскольку тут вступает в силу степенная определенность, имеют степень низшую, чем та величина, которой они суть элементы или множители. Арифметически это различие кажется только количественным, различием корня и степени или иной степенной определенности; но если это выражение имеет лишь количественный смысл, напр., а:а
или d*а
=2а:а
=2:а, или (для закона падения тел) t:at
, то получается лишь ничего не говорящее отношение 1:a, 2:а, 1:at; в противоположность своему только количественному определению члены должны быть разделены по своему различному качественному значению, напр., s:at
; и тем самым величина получает значение качества, функции величины некоторого другого качества. Тем самым сознанию предстоит лишь количественная определенность, над которою, смотря по ее виду, можно без труда производить действия, и можно без всякого сомнения множить величину одной линии на величину другой; но умножение этих двух величин дает вместе с тем качественное изменение перехода линий в плоскость; тем самым выступает отрицательное определение; оно-то и причиняет затруднение, которое разрешается через понимание его особенности и простой сути дела, введение же бесконечных, которыми оно должно бы было быть устранено, приводит, напротив, к запутанности и оставляет его совершенно неразрешенным.