Оценить:
 Рейтинг: 0

Новые законы робототехники. Апология человеческих знаний в эпоху искусственного интеллекта

Год написания книги
2020
Теги
<< 1 2 3 >>
На страницу:
2 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля

2. Роботизированные системы и ИИ не должны притворяться людьми

Перспектива гуманоидных роботов всегда манила, пугала и возбуждала – со времен Азимова и до головокружительной мимикрии «Мира Дикого Запада». Некоторые специалисты по робототехнике стремятся найти правильное сочетание металлических костей и пластиковой кожи, позволяющее вырваться из «зловещей долины», то есть избавиться от чувства жути при виде гуманоидного робота, который слишком сильно приближается к человеческим качествам, жестам и повадкам, но при этом не может их полностью воссоздать. Программы машинного обучения уже освоили искусство создания изображений «фейковых людей», а вскоре получат распространение и убедительные синтетические голоса[20 - Daniella K. Citron and Robert Chesney, “Deep Fakes: A Looming Challenge for Privacy, Democracy, and National Security,” California Law Review 107 (2019): 1753–1819.]. Пока инженеры мучаются с тонкой настройкой этих алгоритмов, без ответа остается более важный вопрос: хотим ли мы жить в мире, в котором люди не знают, с кем они имеют дело – с другим человеком или машиной?

Существует принципиальное различие между гуманизацией технологии и подделкой исключительно человеческих качеств. Ведущие европейские специалисты по этике утверждают, что «должны быть (правовые) границы, определяющие, в какой мере людей можно заставлять верить в то, что они имеют дело с людьми, тогда как на самом деле они общаются с алгоритмами и умными машинами»[21 - European Group on Ethics in Science and New Technologies, European Commission, Statement on Artificial Intelligence, Robotics and ‘Autonomous’ Systems 16 (2018), https://publications.europa.eu/en/publication-detail/-/publication/dfebe62e-4ceg-ne8-beid-oiaa75ed7iai, где цитируется фундаментальный принцип человеческого достоинства. См. также: IEEE, Global Initiative on Ethics of Autonomous and Intelligent Systems, Ethically Aligned Design 39 (1st. ed., 2019), https:// standards.ieee.org/content/ieee-standards/en/industry-connections/ ec/autonomous-systems.html: «Обязанность уважать человеческое достоинство, возможно, потребует определенных ограничений функций и способностей искусственных интеллектов, сузив их возможность заменять людей, человеческие функции и/ или „центральную мыслительную деятельность человека“, примерами которой являются суждение, рассуждение и оценка… Также она, возможно, не позволит ИИ обманывать людей или манипулировать ими».]. Законодатели уже приняли законы об «идентификации ботов» в сетевых контекстах.

Несмотря на этот складывающийся этический консенсус, существуют отдельные области ИИ, например, программирование эмоций, когда анализируются и симулируются человеческие эмоции, задача которых – постоянно усложнять выявление различия между человеком и машинами. Такие исследовательские проекты способны привести к созданию передовых андроидов наподобие тех, что известны по фильму Стивена Спилберга «Искусственный интеллект», в котором машины внешне не отличались от человека. Специалисты по этике спорят о том, как должны проектироваться такие гуманоидные роботы. Но что если их вообще не стоит делать?

В больницах, школах, полицейских участках и даже в производственных цехах мало пользы от загрузки программного обеспечения в гуманоидную форму, а вреда много. Гонка за человекоподобием слишком легко может стать первым шагом на пути к замене человека. Некоторые люди, возможно, предпочтут такую замену в личной жизни, и право должно уважать их автономию в интимных вопросах. Однако безумным было бы общество, стремящееся к такой замене на рабочих местах и в публичной сфере. Подобная идея подменяет развитие человечества его устранением.

Этот аргумент может неприятно удивить или смутить технофилов, поскольку им отрицается содержание и посылка не только законов Азимова, но и обширной литературы о будущем технологий. Я надеюсь оправдать такой консерватизм тем, что последовательно, по главам, продумаю конкретные шаги, которые понадобилось бы сделать, чтобы достичь того научно-фантастического мира, где роботы неотличимы от людей. Для такого перехода необходим массовый контроль людей – и все для того, чтобы создать роботов, призванных дурачить людей или заставлять их относиться к машинам как к равным. Ни та, ни другая перспектива не кажется такой уж привлекательной.

Голос или лицо другого человека требует уважения и внимания; машины не имеют подобных прав на наше участие. Когда чат-боты обманывают ничего не подозревающих людей, которые думают, что они общаются с другими людьми, программисты чат-ботов действуют в качестве фальсификаторов, подделывающих черты реальных людей, чтобы повысить статус своих машин. Когда фальсификация денег достигает критической массы, подлинные монеты теряют ценность. То же самое ждет и человеческие отношения в обществах, которые позволят машинам свободно изображать эмоции, речь и внешний вид людей.

Подделка человека становится особой опасностью в том случае, когда корпорации и государства пытаются придать дружелюбный вид своим услугам и требованиям. Ассистенты Google поразили деловую прессу, изображая секретарей, которые назначают встречи, жутковато подражая даже «мычанию» и «ахам», которыми испещрена обычная беседа по телефону. Подобные междометия маскируют силу таких фирм, как Google, колебанием или уступчивостью, обычно заметными в неотрепетированной человеческой речи. Роботизированный звонок они облекают покровом человеческого запроса. Но тем, кто отвечают на такие звонки, несложно представить, как будет выглядеть злоупотребление – оно станет потоком телефонных вызовов из роботизированных кол-центров.

Подделка человека – не просто обман; она еще и нечестна, поскольку фальсификатор кажется лично заинтересованным и искренним, хотя на самом деле это совсем не так. Как мы сможем показать далее на разных примерах роботов (учителей, солдат, представителей по работе с клиентами и т. д.), неудовлетворенность и стресс при столкновении с неудачными имитациями человека – не просто следствие несовершенной технологии. Скорее в них отражается разумное предостережение об определенном пути развития самой технологии.

Роботизированные системы и ИИ не должны усиливать гонку вооружений с нулевой суммой

Споры о роботах-убийцах крайне важны для этики в международном праве. Глобальная коалиция организаций гражданского общества стремится заставить государства взять на себя обязательство не разрабатывать автономные системы оружия летального действия (АСОЛД (Lethal autonomous weapons systems, LAWS)). Сегодня некоторые факторы блокируют это вполне осмысленное предложение по ограничению технологий. Военачальники не доверяют своим коллегам из стран-конкурентов. Те, возможно, скрывают военные разработки в области ИИ, наращивают силы, публично отрицая при этом свои намерения. Усиливающиеся державы могут самоутверждаться, инвестируя средства в проекты наращивания вооружений, соответствующие их новому экономическому статусу, тогда как господствующие ныне армии требуют дополнительных ресурсов, которые необходимы для поддержания их относительного перевеса. Но это лишь один из способов начать гонку вооружений. Когда на сцену выходят ИИ и роботы, риски отставания от соперников становятся еще более значимыми, поскольку новые технологии обещают быть все более таргетированными, глобальными и быстро развертываемыми.

Политики, отстаивающие дело мира, возможно, будут проповедовать исключительно оборонительную стратегию (что нашло отражение в том, что в 1949 г. американское министерство обороны пришло на смену министерству войны). Тем не менее оборонные средства часто могут использоваться и как наступательные вооружения; достаточно вспомнить об автономных дронах, заточенных на уничтожение ракет, которые, однако, можно перепрограммировать так, чтобы убивать генералов. Соответственно, даже планы обороны могут быть агрессивными, что доказывает пример Стратегической оборонной инициативы (СОИ) Рональда Рейгана. В СОИ, получившей известность как «Звездные войны», должны были использоваться космические лазеры, которые бы сбивали советские ракеты. Если бы эта программа была внедрена, хрупкое равновесие сдерживания (обеспечиваемое гарантированным взаимным уничтожением ядерным оружием) было бы нарушено. АСОЛД, автоматические кибератаки и кампании по дезинформации – сегодня все это грозит подорвать давно сложившиеся ожидания, определявшие цели и границы международного конфликта. Мы должны найти новые способы ограничить их развитие и влияние.

Война поначалу может предстать исключительным положением, во время которого обычные этические аргументы перестают работать (или, по крайней мере, существенно ограничиваются). Однако третий новый закон робототехники применим и за пределами поля боя. Технологии, разрабатываемые в армии, также привлекают полицию, и все больше людей, занятых в области общественного порядка, стремятся использовать распознавание лиц для сканирования толпы в поисках преступников. Опираясь на методы машинного обучения, налоговые органы стремятся выявлять незадекларированные доходы путем анализа электронной почты и банковских счетов всех граждан. Сама возможность столь совершенного надзора заставит людей, обеспокоенных безопасностью, вкладываться в шифрование, которое, в свою очередь, будет подталкивать власти бросать все больше ресурсов на расшифровку.

Нам нужно найти способы сдерживания подобной динамики – и не только в военных и полицейских сценариях. Инвестирование в ИИ и робототехнику часто оказывается частью состязания за определенный набор ресурсов, например, в судопроизводстве, финансах и других областях, где люди конкурируют за позиционные преимущества. Для распределения таких ресурсов государство и корпорации создают для граждан и клиентов репутационные соревнования, в частности рейтингование, которое имеет значение в той мере, в какой позволяет пристыдить определенных людей (с низкими баллами) и превознести других (с высокими). Вначале кредитный рейтинг ограничивался одной областью жизни (определением кредитоспособности) и основывался на ограниченном множестве данных (истории выплат по кредитам). Но спустя десятилетия рейтинги и другие похожие оценки стали определять иные возможности, включая ставки страхования и возможности найма. В последнее время специалисты по сбору информации предложили еще больше источников данных для кредитного рейтинга, начиная с того, как люди печатают на клавиатуре, и заканчивая их политическими взглядами или сайтами, которые они посещают. Китайское правительство значительно расширило задачи подобного контроля, сделав так, что «социальный рейтинг» стал играть роль в определении того, на каких поездах или самолетах гражданин может передвигаться, в каких гостиницах останавливаться и в каких школах могут учиться его дети. Во многих областях Китая расширился объем потенциально используемых данных – начиная с того, как человек переходит улицу, как он относится к своим родителям, и заканчивая степенью его патриотизма и веры в коммунистическую партию и ее учение.

Система социального рейтинга и ее многочисленные западные аналоги вызвали немало споров, и неясно, до чего они способны дойти. Конечно, некоторые области применения таких систем могут оказаться достаточно ценными. Сложно жаловаться на медицинскую систему надзора, которая ускоряет отслеживание контактов, чтобы остановить распространение инфекционного заболевания и препятствует таким образом началу пандемии. Но когда те же инструменты используются для постоянного ранжирования всех и каждого, они становятся элементом подавления людей.

Основная опасность социального контроля средствами ИИ – это создание мира строгой регламентации. Конфликт и конкуренция – часть жизни, и мы должны быть готовы к тому, что технологическое развитие скажется и на них. Однако ИИ и роботы грозят сделать социальный контроль слишком совершенным, а конкуренцию (для того чтобы стать тем, кто способен навязывать контроль или уклоняться от него) – слишком жесткой. Безопасность и креативность человека развиваются в средах, в которых найден баланс предсказуемости и открытости, порядка и подвижности. Если мы не сможем ограничить робототехнику, встроенную в системы социального контроля, этому балансу придет конец.

4. Роботизированные системы и ИИ всегда должны содержать указание на идентичность своего создателя (или создателей), оператора (или операторов) и собственника (или собственников)

За роботов и алгоритмические системы отвечают люди. Конечно, некоторые программы могут сегодня порождать новые программы, которые, в свою очередь, дают начало другим. Но мы все еще может проследить родословную этих «детей и внуков разума» вплоть до их источника[22 - Термин «дети разума» я заимствую у Моравека, хотя у меня совершенно другое представление о будущем робототехники. См.: Hans Moravec, Mind Children: The Future of Robot and Human Intelligence (Cambridge, MA: Harvard University Press, 1990).]. И мы должны сохранить это положение дел в обозримом будущем, несмотря на предсказуемое сопротивление со стороны некоторых апологетов полностью автономного ИИ.

На передовых рубежах ИИ, машинного обучения и робототехники подчеркивается автономия, будь то умных контрактов, высокочастотных трейдинговых алгоритмов (независимых, по крайней мере, в те промежутки времени, которые для людей незаметны) или будущих роботов. Существует туманное понятие «бесконтрольных» роботов, которые сбежали от своего создателя. Возможно, такие инциденты и в самом деле неизбежны. Тем не менее какой-то человек или организация должны за них отвечать. Требование, согласно которому у всякого ИИ или роботизированной системы должно быть лицо, отвечающее за его или ее действие, поможет ограничить те проекты, которые способны оказаться столь же опасными, как нерегулируемая биоинженерия вирусов.

Конечно, некоторые роботы и алгоритмы в своем развитии отступят от идеалов, запрограммированных их собственниками, в результате взаимодействия с другими людьми или машинами (представьте, к примеру, развитый беспилотный автомобиль, который будет развиваться в результате множества влияний, им испытываемых[23 - Даже в подобных случаях можно навязать «бремя самострахования». См.: David С. Viadeck, “Machines without Principals: Liability Rules and Artificial Intelligence,” Washington Law Review 89, no. 1 (2014): 117, 150.]). В подобных случаях может быть несколько сторон, ответственных за развитие данной машины и ее действия[24 - Термин «потенциально ответственные стороны» опирается на документ: Comprehensive Environmental Response, Compensation, and Liability Act, or CERCLA. 42 U.S.C. § 9607(a) (2012), в котором определяются четыре категории сторон, потенциально связанных обязательствами.]. Независимо от того, что именно влияет на развитие подобных машин, исходный создатель обязан встроить в них определенные ограничения на развитие кода, чтобы можно было записывать факторы влияния и в то же время предотвращать возникновение негативных результатов. Когда же другой человек или организация взламывает либо отключает подобные ограничения, ответственным за проступки робота становится хакер.

В качестве примера применения этого принципа рассмотрим чат-бота, который постепенно обучается определенным паттернам диалога, используя для этого общение в сети Twitter. Если верить некоторым новостным аккаунтам, чат-бот компании Microsoft, Tay, оснащенный ИИ, быстро усвоил речевые паттерны отъявленных нацистов, проведя лишь несколько часов в Twitter[25 - Helena Horton, “Microsoft Deletes ‘Teen Girl’ Al after It Became a Hitler-Loving Sex Robot,” Telegraph, March 24, 2017, https://www.telegraph. co.uk/technology/2016/o3/24/microsofts-teen-girl-ai-turns-into-a-hitler-loving-sex-robot-wit/.]. Microsoft не программировала такой результат, но компания должна была знать, что опасно размещать бота на платформе, известной плохой модерацией преследований и ненавистнических высказываний. Кроме того, если бы чат-бот вел дневник дурных воздействий, он мог бы сообщить о них в сети Twitter, которая, если бы работала лучше, могла бы предпринять определенные действия, чтобы приостановить или замедлить поток оскорблений, исходящих от аккаунтов троллей, а может, и кого похуже.

Регулирующие ведомства должны будут требовать запроектированной ответственности (дополняющей обширные модели запроектированной безопасности и конфиденциальности). Для этого, возможно, придется запрограммировать на аппаратном уровне обязательные контрольные журналы или ввести практики лицензирования, в которых специально оговариваются проблемные исходы[26 - Различие между закрытой и открытой робототехникой см. в: M. Ryan Calo, “Open Robotics,” Maryland Law Review 70 (2011): 571, 583–591; Diana Marina Cooper, “The Application of a ‘Sufficiently and Selectively Open License’ to Limit Liability and Ethical Concerns Associated with Open Robotics,” in Robot Law, eds. Ryan Calo, A. Michael Froomkin, and Ian Kerr (Cheltenham, UK: Edward Elgar, 2016), 163, 164–165.]. Подобные инициативы будут не просто регулировать робототехнику и ИИ post hoc, но и влиять на развитие систем, закрывая одни возможности 27 проектирования и поощряя другие[27 - Staff of the US Securities and Exchange Commission and Staff of the US Commodity Futures Trading Commission, Joint Study on the Feasibility of Mandating Algorithmic Descriptions for Derivatives (April 2011), 16, 16П77, 24, https://www.sec.gov/news/studies/2011/719b-study.pdf.].

* * *

Каждый из этих новых законов робототехники, требующих дополнительности, аутентичности, сотрудничества и атрибуции, основывается на теме, которая будет служить ориентиром для всего нашего исследования, а именно на ключевом различии между технологией, которая заменяет людей, и технологией, которая позволяет им лучше делать свою работу. Смысл новых законов в том, чтобы развивать программы, которые делают ставку на силы человека в таких областях, как здравоохранение и образование, и чтобы воспользоваться человеческими ограничениями для сужения масштаба и снижения интенсивности конфликта и зарегулированности в нашей социальной жизни.

Исследователи в области ИИ давно стремятся создать компьютеры, которые могли бы чувствовать, мыслить и действовать как люди. Еще в 1960-е гг. специалисты по робототехнике в MIT разрабатывали роботов-часовых, способных освободить солдат от утомительной и опасной обязанности стоять на посту в местах, которые могут подвергнуться атаке[28 - John Markoff, “The Creature That Lives in Pittsburgh,” New York Times, April 21, 1991, http://www.nytimes.com/1991/04/21/business/ the-creature-that-lives-in-pittsburgh.html?pagewanted=all; Rodney Brooks, Flesh and Machines: Ноъо Robots Will Change Us (New York: Pantheon, 2002).]. Однако есть и другое понимание робота-часового – его можно расценивать не в качестве ИИ, заменяющего воинский состав, а в качестве еще одного средства, повышающего эффективность солдат-охранников. Если внедрить такой ИИ, армии, возможно, не нужно будет призывать дополнительных солдат для контроля все новых и новых угроз. Можно разработать сенсоры и компьютеры, которые будут работать в качестве дополнительного набора ушей и глаз, быстро оценивая уровни угрозы и другие данные, чтобы помочь солдатам с выбором действий. Эта цель, которая определяется как «усиление интеллекта» (УИ), определила проекты многих первопроходцев интернета[29 - См.: Джон Маркофф, Homo Roboticus?Люди и машины в поисках взаимопонимания (Москва: Альпина нон-фикшн, 2017), где описывается первопроходческая работа в области ИИ Дага Энгельбарта и многих его последователей. См. также: Doug Engelbart, Augmenting Human Intellect: A Conceptual Framework (Washington, DC: Air Force Office of Scientific Research, 1962).]. Также она является основой современного военного дела, то есть когда пилоты дронов работают с обширным комплексом данных, поступающих от сенсоров, и от их решений о воздушных бомбардировках зависят вопросы жизни и смерти.

Различие между ИИ и УИ, хотя порой оно и стирается, критически важно для определения направления инноваций. Большинство родителей не готовы отправить своих детей к учителям-роботам. Также детей не нужно учить тому, что их учителей со временем заменят машины, отлично подогнанные под их манеру обучения. В образовании есть много более гуманных концепций роботов. Например, школы уже успешно экспериментировали с «роботами-компаньонами», помогающими ученикам зубрить списки слов. Они способны задавать вопросы о том, что ученики только что выучили. Эти роботы, которые выглядят как животные или вымышленные создания, но не люди, не ставят под вопрос уникальность человека.

Исследователи постепенно приходят к выводу, что во многих контекстах УИ дает лучшие результаты и приносит больше пользы, чем искусственный или человеческий интеллект, когда они работают порознь. УИ и роботы, выполняющие функцию ассистентов, могут стать настоящим подарком для работников, высвобождая время для отдыха или досуга. Но в любой современной экономике действуют законы, которые заставляют выбирать ИИ, а не УИ.

Робот не просит отгулов, справедливой заработной платы, ему не нужна медицинская страховка. Когда труд рассматривается прежде всего в качестве издержек, справедливая оплата становится проблемой, которую как раз и должны решить роботы. Роботы привели к революции в промышленном производстве, заменив рабочих на конвейере. Сегодня многие бизнес-эксперты требуют похожего технологического развития, которое позволит роботам взять на себя более сложные задачи, начиная с медицины и заканчивая армией.

Слишком многие журналисты, увлеченные этим управленческим энтузиазмом, обсуждали «роботов-юристов» и «роботов-врачей» так, словно они уже существуют. В этой книге будет показано, что подобные описания нереалистичны. В той мере, в какой технология действительно меняет профессии, она обычно действует методами УИ, а не ИИ. За головокружительными заголовками о «программах, которые съедают мир», скрываются десятки менее громких случаев применения вычислений, помогающих адвокатам, врачам или учителям работать лучше и быстрее[30 - Marc Andreessen, “Why Software Is Eating the World,” Wall Street Journal, August 20, 2011, https://www.wsj.com/articles/SB1ooo1424053111903480904576512250915629460..]. Вопрос программ инноваций теперь в том, как сохранить преобладание УИ и где развивать ИИ. Эту проблему мы проанализируем применительно к разным секторам, не пытаясь придумать одну на все случаи модель технологического развития.

В разговорах о роботах обычно два полюса – утопический («машины будут делать всю грязную, опасную или сложную работу») и дистонический («да и всю остальную, а потому создадут массовую безработицу»). Однако будущее автоматизации рабочих мест (и не только) будет определяться миллионами небольших решений о том, как развивать ИИ.

В какой мере можно довериться машинам и передать им задачи, которые раньше выполняли люди? Что приобретается и теряется, когда они берут их решение на себя? Каково оптимальное сочетание роботизированных и человеческих взаимодействий? И как различные правила – начиная с кодексов профессиональной этики и заканчивая страховыми программами и уставами – влияют на объем и скорость роботизации повседневной жизни? Ответы на эти вопросы могут в значительной мере определять то, к чему приведет автоматизация – к революции роботов или к медленному и осторожному улучшению того, как выполняется та или иная работа.

* * *

Почему нас должны особенно волновать роботы и ИИ, если сравнить их с повсеместно распространившимися экранами и программами, которые уже колонизировали значительную часть нашего времени? Есть две практические причины. Во-первых, физическое присутствие робота может быть намного более навязчивым, чем любого планшета, смартфона или сенсора; собственно, сами эти технологии могут встраиваться в роботов[31 - Ryan Calo, “Robotics and the Lessons of Cyberlaw,” California Law Review 103, no. 3 (2015): 513–563.]. Никакой плоский экран не может протянуть руку, остановить ребенка-хулигана или непокорного заключенного, меняя тем самым актуальную технологию контроля толпы и вырабатывая новые формы дисциплины. Но робот все это может.

Даже если внедрение роботов идет медленно или в ограниченном масштабе, ИИ грозит дать новый толчок техникам завлечения и убеждения, встроенным в различные технологии, начиная с мобильных приложений и заканчивая видеопокером[32 - Ian Kerr, “Bots, Babes and the Californication of Commerce,” Ottawa Law and Technology Journal 1 (2004): 285–325.]. Исследователь взаимодействий человека и компьютера Джули Карпентер отмечает: «Даже если вам известно, что у робота очень мало автономии, но когда нечто движется в вашем пространстве и при этом кажется, что это движение происходит с какой-то определенной целью, мы приписываем такой вещи внутреннее сознание или цели»[33 - Rachel Lerman, “Be Wary of Robot Emotions; ‘Simulated Love Is Never Love,’ ” Phys.org, April 26, 2019, https://phys.org/news/2019-04-wary-r0b0t-em0ti0ns-simulated.html.]. К примеру, и такой не слишком одушевленный аппарат, как робот-пылесос, может вызвать эмоциональную реакцию. Чем больше сенсоров записывают наши реакции, тем богаче залежи эмоциональных данных, в которых могут копаться все более сложные компьютеры[34 - Natasha Dow Schull, Addiction by Design: Machine Gambling in Las Vegas (Princeton: Princeton University Press, 2014); Ryan Calo, “Digital Market Manipulation,” George Washington Law Review 82 (2014): 995; Neil Richards, “The Dangers of Surveillance,” Harvard Law Review 126 (2019): 1934.]. Каждый «лайк» – это сигнал, указывающий на то, что нас привлекает; каждое зависание на экране – это положительное подкрепление для определенной базы данных о манипуляциях. Миниатюрные сенсоры делают наблюдение мобильным, подрывая наши попытки скрыться. Действительно, решение скрыться от сенсоров может быть основой для действий, которые очень много расскажут об окружающем нас мире. Более того, вычислительные мощности и хранилища данных могут завести нас на путь дистопии, где все имеет значение, так что все, что делает ученик, может записываться и сохраняться для оценок в будущем[35 - Mark Andrejevic, “Automating Surveillance,” Surveillance and Society 17 (2019): 7.]. И наоборот, в обычной школе ученик каждый год встречается с новыми учителями, что позволяет ему начинать с относительно чистого листа[36 - Neil Selwyn, Distrusting Educational Technology: Critical Questions for Changing Times (New York: Routledge, 2014).].

Нельзя сказать, что какой-либо из этих тревожных прогнозов наверняка сбудется, и это вторая причина, заставляющая сосредоточиться на современных программах развития робототехники. Когда роботы проникают в хорошо регулируемые сферы, у нас появляется отличная возможность определить их развитие, применяя разумные правовые стандарты защиты неприкосновенности личной жизни и защиты потребителей. Мы можем определять направление развития технологии правом[37 - Laurence H. Tribe, Channeling Technology through Law (Chicago: Bracton, 1973).]. Роботов не обязательно проектировать так, чтобы они записывали каждый момент жизни того, кого они сопровождают или за кем следят. Действительно, сам надзор за роботами может показаться достаточно угнетающим, чтобы мы требовали некоторого человеческого контроля за любой подобной системой (что и стало правилом в одной роботизированной южнокорейской тюрьме, где человек следит за механическими охранниками). Когда роботы становятся частью системы наказания, любое решение по их применению должно определяться открытой и содержательной дискуссией об управлении тюрьмами и относительных достоинствах возмездия и реабилитации. Ведь одна из основных целей новых законов робототехники – заставить политиков и чиновников не рассматривать столкновение позиций по вопросам ИИ и робототехники в качестве всего лишь части общей «программы развития технологии» и привлечь их к подлинному сотрудничеству с экспертами-профессионалами, обязанностью которых является защита важных ценностей в хорошо структурированных областях деятельности.

Циники могут посмеяться над такими ценностями, объявив их всецело субъективными, а потому обреченными на устаревание в обществе, которое становится все более технологическим. Однако сообщества ученых и консультантов, занимающихся наукой, технологией и человеческими ценностями, показали, что прогностическая этика может определять проектирование технологий и влиять на него[38 - Deborah G. Johnson, “The Role of Ethics in Science and Technology,” Cell 29 (2010): 589–590; Deborah G.Johnson, “Software Agents, Anticipatory Ethics, and Accountability,” in “The Growing Gap between Emerging Technologies and Legal-Ethical Oversight, eds. Gary E. Marchant, Braden R. Allenby, and Joseph R. Herkert (New York: Spring, 2011), 61–76; Ari Ezra Waldman, Privacy as Trust (Oxford: Oxford University Press, 2018).]. Ценности сами встраиваются в технологию[39 - Mary Flanagan and Helen Nissenbaum, Values at Play in Digital Games (Cambridge, MA: MIT Press, 2014).]. Канадские, европейские и американские регулирующие ведомства в качестве принципа, на который обязаны ориентироваться разработчики, ввели «запроектированную конфиденциальность»[40 - См., например: Ann Cavoukian, “Privacy by Design: The 7 Foundational Principles,” Office of the Information and Privacy Commissioner of Canada (2009).]. Подобные правила в еще большей степени должны относиться к технологии, опирающейся на массовое использование сенсоров, которая может свободно наращивать свои способности к записи изображения и звука. Например, у многих видеокамер есть красная лампочка, включение которой показывает, что они записывают видео, и точно так же у роботов должен быть эквивалентный индикатор, показывающий, что они записывают людей, находящихся рядом с ними. Данные, основанные на ИИ, должны стать предметом строгих ограничений, определяющих их сбор, анализ и применение[41 - Дополнительную информацию по вопросам конфиденциальности, возникающим в связи с роботами и предсказательной аналитикой, см. в: Drew Simshaw, Nicolas Terry, Kris Hauser, and M. L. Cummings, “Regulating Healthcare Robots: Maximizing Opportunities while Minimizing Risks,” Richmond Journal of Law and Technology 27, no. 3 (2016): 1-38, 3. Об интеграции права и принципов проектирования с целью эффективного извещения см.: Ari Ezra Waldman, “Privacy, Notice, and Design,” Stanford Technology Law Review 21, no. 1 (2018): 129–184.].

Адепты технологий, возможно, возразят, сказав, что регулировать робототехнику пока еще слишком рано. Пусть проблема оформится, и тогда с ней можно будет что-то сделать, считают сторонники laissez-faire. Но такой квиетизм неуместен. Слишком часто в области высоких технологий индустрия демонстрирует тот факт, что подходящего момента для регулирования не бывает никогда. Когда возникают новые бизнес-практики, вызывающие опасения, регуляторов, готовых приступить к действиям, обвиняют в том, что они душат «индустрию в зародыше». Когда же подобные практики получают широкое распространение, сам факт их повсеместности демонстрируется в качестве доказательства того, что потребители уже свыклись с ними. На любой аргумент в пользу правового воздействия найдется заранее заготовленная стратегия отвлечения, основанная на успокоительных заверениях и трюизмах. «А есть ли проблема на самом деле?», «Давайте подождем и посмотрим», «Потребители хотят этого» – все это преподносится в качестве годного на любой случай, козырного обоснования бездействия[42 - Эту стратегию аргументации Хуфнегл называет «карточной колодой отрицателей». См.: Christopher Jay Hoofnagle, “The Denialists’ Deck of Cards: An Illustrated Taxonomy of Rhetoric Used to Frustrate Consumer Protection Efforts,” ScienceBlogs, February 9, 2007, https:// scienceblogs.com/denialism/the- denialists- deck- of- cards.].

Позиция «подождем – посмотрим» игнорирует то, что технология, не будучи ни в коем смысле независимой от ценностей, сама начинает их формировать[43 - Frank Pasquale, “Technology, Competition, and Values,” Minnesota Journal of Law, Science, and Technology 8 (2007): 607–622; Peter Asaro, “Jus Nascendi, Robotic Weapons and the Martens Clause,” in Robot Law, eds. Ryan Calo, A. Michael Froomkin, and Ian Kerr (Cheltenham, UK: Edward Elgar, 2016), 367–386.]. Роботы – компаньоны детей в сетевых чартерных школах не просто отражают (или искажают) существующие ценности, определяющие то, какая именно социализация нужна детям, они еще и формируют ценности этих поколений, прививая им понимание того, какие моменты являются приватными, а какие могут легко постоянно записываться. Подобные обычаи не должны проистекать просто из того, что наиболее выгодно поставщикам технологизированного образования. Они требуют демократического управления и участия экспертов, работающих не только в сфере технологии[44 - Frank Pasquale, “Technology, Competition, and Values,” Minnesota Journal of Law, Science, and Technology 8 (2007): 607–622.].

* * *

Эта роль технологии в оформлении ценностей представляется очевидной опасностью в военном деле, где роботы могут существенно поменять наше понимание параметров честного конфликта. С точки зрения некоторых футуристов, автоматизация военного конфликта – дело решенное. Ни одна военная держава не может позволить себя слишком сильно отстать от конкурентов в разработке страшного флота «роботов-убийц»[45 - См., например: Kenneth Anderson and Matthew C. Waxman, “Law and Ethics for Autonomous Weapon Systems: Why a Ban Won’t Work and How the Laws of War Can,” Hoover Institution Stanford University Task Force on XationalSecurity and Law (2013), где дается ответ на кампанию «Остановить роботов-убийц» (Campaign to Stop Killer Robots).]. Если мы «запрограммированы на войну», значит, мы будем развивать смертоносные роботизированные силы[46 - P. W. Singer, Wiredfor War: The Robotics Revolution and Conflict in the 21st Century (New York: Penguin, 2009), 435.]. С такой точки зрения человеческая природа сама диктует определенное направление технологического развития, как и, возможно, свое собственное устаревание, которое приведет к появлению сверхчеловеческих роботизированных систем[47 - Ray Kurzweil, The Age of Spiritual Machines (New York: Penguin, 1999).].

Подобный реализм может быть благоразумным, однако он рискует стать опасным самоисполняющимся пророчеством, то есть ускорить гонку вооружений, а не просто ее предсказать. Чем менее дорогостоящим кажется военное вмешательство, тем с большей вероятностью оно привлечет политиков и государства. Кроме того, чем с большей точностью можно использовать силы, тем больше друг с другом начинают сливаться язык войны и язык правоприменения, создавая этические серые зоны. Рассмотрим почти уже реальную возможность: США могут дополнить своих воздушных дронов, присутствующих в зонах военных действий, наземными роботами и более мелкими дронами, проникающими в помещения. Кем в таком случае считать людей, отслеживаемых такими дронами, – комбатантами или подозреваемыми? И международные, и национальные правовые прецеденты указывают на разное обращение с теми и другими. Подобное обращение нельзя легко автоматизировать или, может быть, вообще нельзя. Следовательно, военное право (или простая уголовная процедура) могут стать непреодолимым барьером для роботов-солдат или, о по крайней мере, для их законного применения[48 - Rebecca Crootof, “A Meaningful F100r for Meaningful Human Control,” Temple International and Comparative Law Journal 30 (2016): 53–62; Paul Scharre, “Centaur Warfighting: The False Choice of Humans vs. Automation,” Temple International and Comparative Law Journal 30 (2016): 151–166.].

И академики, и государственные чиновники уже приступили к анализу сценариев роботизированной войны и правоприменения[49 - Jeffrey L. Caton, Autonomous Weapon Systems: A Brief Survey of Developmental, Operational, Legal, and Ethical Issues (Carlisle, PA: US Army War College Press, 2015); Liang Qiao and Xiangsui Wang, Unrestricted Warfare: China’s Master Plan to Destroy America, trans. Al Santoli (Panama City: Pan American Publishing, 2000).]. Следует ожидать дальнейшего слияния двух этих областей под общей рубрикой «внутренней безопасности» и все большего применения роботов с целью поддержания общественного порядка. В конечном счете нам обещают появление сверхчеловеческого интеллекта, который будет выявлять угрозы, то есть ИИ, способного просеивать миллионы потоков данных для быстрого выявления и предотвращения будущего преступления.

Но прежде чем воодушевляться подобной технологией, надо привести некоторые отрезвляющие примеры, показывающие, насколько бесчеловечным может быть искусственный интеллект. Исследователи использовали машинное обучение для предсказания криминальных наклонностей на основе таких скудных данных, как черты лица. Должны ли будущие роботы-полицейские учитывать эти данные о криминальных чертах лица при принятии решений о том, за какими людьми следить внимательнее, а каких игнорировать? Или любые данные и выводы на их основе запрещены для машин и техник, которые в будущем могут стать еще более важной частью охраны общественного порядка, например, таких, как предиктивный анализ, ныне пользующийся популярностью в некоторых отделениях полиции? Есть ли у нас право инспектировать и обсуждать подобные данные? Должны ли эти исследования вообще проводиться?[50 - Проекты по анализу лиц, упомянутые в этом абзаце, критикуются в работе: Frank Pasquale, “When Machine Learning is Facially Invalid,” Communications of the ACM 61, no. 9 (2018): 25–27.]

Соотнесение черт лица с криминальными наклонностями может показаться довольно экзотическим или необычным применением ИИ. Однако базовая логика развитых вычислительных решений остается непроницаемой для обычных форм объяснения. Некоторые специалисты по робототехнике превозносят такую необъяснимость, представляя ее в качестве альтернативы человеческому интеллекту, выходящей далеко за его пределы. «В какой-то момент это все равно что объяснять Шекспира собаке», – заметил Ход Липсон из Колумбийского университета, когда его попросили оценить необходимость потребовать от ИИ большей прозрачности[51 - David Castlevecchi, “Can We Open the Black Box of Al?” Scientific American, October 5, 2016, https://www.scientificamerican.com/ article/can-we-open-the-black-box-of-ai/.]. Если речь идет об уничтожении раковых клеток или предсказании погоды, Липсон, возможно, в чем-то и прав: нам не нужно понимать точный механизм ИИ, чтобы дать ему возможность решать наши проблемы. Но когда дело касается важных человеческих решений, необъяснимое становится неприемлемым. Как показывает постепенно складывающееся в ЕС «право на объяснение», необъяснимое может быть ограничено и заменено более гуманным подходом.

Некоторые крупнейшие сражения вокруг роботов и ИИ будут сосредоточены на аналитической силе машин. Какие данные им позволено собирать и применять? И как такие данные будут обрабатываться? Эти вопросы жизненно важны для будущего демократии и коммуникаций. Подумаем о том, как и когда расцветает дезинформация[52 - Jennifer Kavanagh and Michael D. Rich, Truth Decay: An Initial Exploration of the Diminishing Role of Facts and Analysis in American Public Life, Santa Monica, CA: RAND Corporation, 2018, https://www.rand. org/pubs/research_reports/RR23i4.html; Alice Marwick and Rebecca Lewis, Media Manipulation and Disinformation Online (New York: Data and Society, 2017), https://datasociety.net/pubs/oh/DataAndSocie-ty_MediaManipulationAndDisinformationOnline.pdf.]. Хотя недобросовестная пропаганда давно преследует медиа, автоматизированная в значительной мере публичная сфера дала ей новый толчок, допустив вирусное распространение ложных заявлений и фейков. Некоторые властные структуры уже начали вмешиваться, блокируя распространение разжигания ненависти и лжи. Это первый шаг на пути к восстановлению сетевой публичной сферы, но потребуется намного больше – в частности, журналисты, соблюдающие традиционные нормы своего ремесла, должны будут играть более важную роль.

Киберлибертарианцы будут доказывать, что искусственные интеллекты должны обладать «свободой мысли», подразумевающей обработку любых данных, которые они только могут найти или которые их собственники решат им «скормить». В области чистых вычислений, не связанной с социальными последствиями, это право может соблюдаться. Ради свободы слова можно позволить любую неуважительную речь; программисты могут утвердить подобное право на ввод в программы данных независимо от их социальных последствий. Но как только алгоритмы – и особенно роботы – начинают оказывать определенное воздействие на мир, они должны регулироваться, а программисты должны нести этическую и правовую ответственность за причиненный ими вред[53 - О различии между речью и поведении см., например: Claudia Haupt, “Professional Speech,” Yale Law Journal 125, no. 5 (2016): 1238–1303.].

Профессионализм и экспертные знания

Кто должен решать, что включается в такую ответственность? Мягкий и ровный переход потребует старых и в то же время новых форм профессионализма в нескольких ключевых областях. Понятие экспертных знаний обычно указывает на владение определенным корпусом информации, но его реальное применение требует намного большего[54 - Как показывает Джил Эйал, экспертные знания вполне могут существовать вне эксперта, не только в виде набора пропозиционально выраженных знаний, но и в качестве институтов. См.: Gil Eyal, The Crisis of Expertise (Medford, MA: Polity Press, 2019).]. Будущее трудовой занятости покажется довольно мрачным тем, кто путает профессиональные обязанности с простым знанием. Способность компьютеров хранить и обрабатывать информацию выросла по экспоненте, и постоянно накапливается все больше данных о том, что люди делают на рабочем месте[55 - Alex (Sandy) Pentland, Honest Signals: How They Shape Our World (Cambridge, MA: MIT Press, 2008), где обсуждаются социометрические индикаторы.]. Однако профессионализм включает в себя и нечто более сложное – постоянную необходимость решать конфликты ценностей и обязанностей, а также противоречивость описаний фактов[56 - См.: Andrew Abbott, The System of Professions: An Essay on the Division of Expert Labor (Chicago: University of Chicago Press, 2014); Eliot Freidson, Professionalism, The Third Logic: On the Practice of Knowledge (Chicago: University of Chicago Press, 2001).]. И это имеет большое значение для будущего состояния рынка труда.

Представим, например, что вы едете домой со скоростью сорок пять миль в час по дороге с двумя полосами движения. Впереди, на расстоянии сотни ярдов, вы замечаете группу детей, которые идут домой после школы. Но именно в тот момент, когда вы вот-вот проедете мимо них, встречная фура виляет и выезжает со своей полосы, направляясь вам прямо в лоб. У вас лишь пара секунд, чтобы решить: пожертвовать собой или наехать на детей, чтобы уклониться от грузовика.

Мне хочется думать, что большинство выберет более благородный вариант. По мере развития автоматизации вождения подобные ценности самопожертвования могут быть закодированы непосредственно в транспортные средства[57 - Подробное обсуждение «автоматизации добродетели» см. в: Ian Kerr, “Digital Locks and the Automation of Virtue,” in From Radical Extremism to Balanced Copyright: Canadian Copyright and the Digital Agenda, ed. Michael Geist (Toronto: Irwin Law, 2010), 247–303.]. Многие автомобили уже сегодня заметят малыша на дороге, которого может задавить водитель, если в поле его зрения есть слепое пятно. Они даже подают сигнал, когда есть риск столкновения с другими автомобилями. Технически возможно перейти от системы оповещения к остановке, которая будет закодирована на аппаратном уровне[58 - Hope Reese, “Updated: Autonomous Driving Levels о to 5: Understanding the Differences,” TechRepublic, January 20, 2016, http:// www.techrepublic.com/article/autonomous-driving-levels-o-to-5-understanding-the-differences/.]. А если это возможно, следовательно, возможно и автоматическое торможение, не позволяющее водителю вильнуть в сторону ради самосохранения, которое будет во вред другим.
<< 1 2 3 >>
На страницу:
2 из 3