Глубокое обучение на Python (pdf+epub)
Автор:
Жанр:
Год написания книги: 2018
Глубокое обучение динамично развивается, открывая все новые и новые возможности создания ПО. Это не только автоматический перевод текстов с одного языка на другой, распознавание изображений, но и многое другое. Глубокое обучение превратилось в важный навык, необходимый каждому разработчику. Keras и TensorFlow облегчают жизнь разработчикам и позволяют легко работать даже тем, кто не имеет фундаментальных знаний в области математики или науки о данных.
Настала пора познакомиться с глубоким обучением и мощной библиотекой Keras!
В этом расширенном и дополненном издании создатель библиотеки Keras – Франсуа Шолле – делится знаниями и с новичками, и с опытными специалистами. Илл…
Далее
На сайте электронной библиотеки Litportal вы можете скачать книгу Глубокое обучение на Python (pdf+epub) в формате fb2.zip, txt, txt.zip, rtf.zip, a4.pdf, a6.pdf, mobi.prc, epub, ios.epub, fb3. У нас можно прочитать отзывы и рецензии о этом произведении.
Скачать книгу в форматах
Читать онлайн
Отзывы о книге Глубокое обучение на Python (pdf+epub)
Lukyanchikov
Отзыв с LiveLib от Мая г.,
Эта книга подойдет в первую очередь тем, кто хочет начать изучать глубокое обучение. В книге используется фреймворк Keras, который был разработан автором данной книги (ну и сообществом, конечно). После прочтения вы не станете профессионалом в области нейронных сетей, однако, поймете базовые принципы на примере простеньких задач.
ThinkDifferent
Отзыв с LiveLib от Мая г.,
Книга оправдала возложенные на неё ожидания. Начало книги посвящено истории появления машинного обучения, нейронных сетей. Присутствует краткое описание математического аппарата данной темы. Рассмотрены и описаны основные виды нейронных сетей: начиная от простейших и заканчивая генеративно-состязательными сетями. Так как автор один из создателей Keras, то всё примеры кода приведены с использованием именно этой библиотеки на языке Python. Вникнуть в суть помогают блок-схемы и диаграммы. Достаточно внимания уделено вопросам настройки параметров и повышения точности предсказания моделей, что очень важно для будущих data-scientist-ов. Местами перевод не блещет, но тема достаточно специфическая и присутствует много узкоспециализированных терминов. В конце книги можно подчерпуть основные тренды развития глубокого обучения. Есть приложение по настройке с нуля окружения и программ для начала работы с Keras. Думаю после прочтения данной книги многие вопросы по работе с нейронными сетями станут …Далее