Оценить:
 Рейтинг: 0

Геометрия-7. Начало. Часть 2

Год написания книги
2019
<< 1 2
На страницу:
2 из 2
Настройки чтения
Размер шрифта
Высота строк
Поля

Рис.3

Мы совершим перемещение плоскости, такое, при котором флаг Ф1 с красным «держаком» перейдет во флаг Ф2 с зеленым «держаком». Уверен, у вас достаточно воображения, чтобы понять, что это означает просто переворачивание треугольника и наложение его на самого себя.

Тогда совпадут углы при вершине – ведь они равны (в перевернутом виде угол остается равным самому себе, следовательно, наложится сам на себя и совпадет).

Дальше совпадут боковые стороны, они равны, т.к. треугольник равнобедренный. То есть полностью треугольники совпадут. Наконец, углы при основании наложатся друг на друга и тоже совпадут. Значит они равны.

Теорема, о которой мы только что говорили, в обычных обозначениях записалась бы так. Дан равнобедренный ?АВС, причем АВ=ВС. Утверждается, что <ВАС = <ВСА. После переворачивания получаем треугольник А

В

С

. Совмещаем В и В

, затем АВ и С

В

, ВС и В

A

… И треугольники совместятся. Это – хороший способ записи доказательства, но часто суть бывает легче усмотреть, используя не буквы, а стрелки. Если потребуется, вам будет легко записать то или иное доказательство так, как нужно на контрольной или на экзамене.

Верно и следующее утверждение.

Т2.2. Если у треугольника равны два угла, то он – равнобедренный. Доказательство такое же. Переворачиваем треугольник и накладываем сторону, к которой прилежат эти два угла саму на себя (она, естественно, совпадет сама с собой). То есть мы объявляем ее основанием. Другие две стороны пойдут по соответствующим сторонам (так как углы равны), и таким образом, получится совпадение.

Эта теорема – обратная к предыдущей (которая при этом называется прямой теоремой). Что такое «обратная теорема»? Если прямая теорема гласит: «Если А, то В» (если стороны равны, то равны и углы), то обратная будет: «Если В, то А» (у нас: если углы равны, то равны и стороны).

Еще небольшой экскурс в логику (в науку о правильном мышлении). Треугольник с разными углами НЕ может быть равнобедренным.

Почему?

Минута на размышление.

Потому что если бы он был равнобедренным, то углы при основании были бы равны, а у нас они НЕ равны. Такой тип доказательства, как мы знаем, называется «доказательством от противного» (хотя, в сущности, ничего противного в нем нет, совсем наоборот!)


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2
На страницу:
2 из 2