Усиленное обучение
Автор:
Жанр:
Год написания книги: 2024
Данное руководство по усиленному обучению (Reinforcement Learning, RL), охватывает теоретические основы, практические применения и современные достижения. В начале дается определение RL, его исторический контекст и ключевые отличия от других видов машинного обучения. Примеры применения RL охватывают игры, робототехнику, финансовые рынки и управление ресурсами. Математические основы включают марковские процессы принятия решений, состояния, действия, награды и политики, а также Беллмановские уравнения и итерацию ценности.
Основные алгоритмы RL, такие как метод Монте-Карло, Q-Learning, SARSA, методы градиента политики, REINFORCE и Actor-Critic, рассматриваются вместе с модел…
Далее
На сайте электронной библиотеки Litportal вы можете скачать книгу Усиленное обучение в формате fb2.zip, txt, txt.zip, rtf.zip, a4.pdf, a6.pdf, mobi.prc, epub, ios.epub, fb3. У нас можно прочитать отзывы и рецензии о этом произведении.