Оценить:
 Рейтинг: 3.6

Компьютерная графика в дизайне

Год написания книги
2008
<< 1 ... 7 8 9 10 11 12 13 14 15 ... 21 >>
На страницу:
11 из 21
Настройки чтения
Размер шрифта
Высота строк
Поля

Как вытекает из изложенного ранее, цвет переднего плана должен быть черным, а фоновый цвет – белым. Из-за этого штриховую модель довольно часто называют моделью черно-белого изображения. Этот термин представляется не очень удачным по нескольким причинам:

• аналогичным термином иногда обозначают монохромные изображения с белым и черным базовыми цветами;

• от перемены мест черного и белого ничего не меняется – любой из этих цветов может быть как фоновым, так и цветом переднего плана;

• вместо черного и белого возможны любые другие фиксированные цвета, и при этом ни суть модели, ни методы для работы с ней не изменяются.

Основные приемы работы со штриховыми изображениями описаны в разд. 3.6.1.

Монохромная модель

Монохромная модель цвета представляет собой расширение штриховой модели, достигаемое за счет введения в цветовое пространство цветов, полученных смешиванием базовых цветов модели. Монохромным называется изображение, в котором используются цвета, полученные смешиванием в различных пропорциях двух фиксированных базовых цветов. Цвета, промежуточные по отношению к базовым цветам монохромной цветовой модели, называются оттенками. Оттенки отличаются друг от друга процентным содержанием базовых цветов. Как правило, в названии оттенка указывают содержание только одного базового цвета. Например, если в качестве цвета переднего плана выбран синий, а в качестве фонового – белый, то оттенки определяются следующим образом: «20 %-ный оттенок сине-белой монохромной модели цвета».

Примечание

В подавляющем большинстве случаев как минимум один из базовых цветов монохромной модели – ахроматический. Тогда хроматика (цветность) всех оттенков такой модели имеет одинаковое значение, т. е. оттенки монохромны. При использовании в качестве базовых двух различных цветов, получившиеся оттенки модели уже не будут монохромными, их хроматика меняется от оттенка к оттенку. Однако в рамках курса компьютерной графики такую цветовую модель тоже целесообразно считать монохромной, поскольку она устроена точно так же, как истинно монохромная цветовая модель, и работают с ней теми же методами.

Чаще всего в качестве базовых цветов монохромной модели выбирают черный и белый. В этом случае в названии монохромной модели базовые цвета не указываются. Если упоминается 40 %-ный оттенок без дополнительных замечаний, речь идет о цвете, полученном смешиванием 40 % черного и 60 % белого цвета.

Цветовое пространство монохромной модели непрерывно и содержит в себе бесконечное число цветов. В компьютерной графике их принято упорядочивать по возрастанию доли базового цвета переднего плана. Упорядоченная совокупность всех цветов монохромной модели цвета называется монохромной шкалой или шкалой градаций базового цвета. Шкала градаций черного цвета представлена на рис. 1.3.4.

Рис. 1.3.4. Шкала градаций черного цвета

Примечание

Когда употребляется термин "шкала градаций цвета", предполагается, что второй базовый цвет монохромной шкалы – ахроматический, т. е. черный или белый. Шкалу градаций черного цвета часто называют шкалой градаций серого. Поскольку серый цвет – это промежуточный оттенок монохромной модели с черным и белым базовыми цветами, данный термин не совсем точен.

На рис. 1.3.5 представлены штриховое и монохромное изображения одного и того же предмета.

Рис. 1.3.5. Штриховое и монохромное изображения манипулятора «мышь»

Монохромная модель цвета очень широко применяется в компьютерной графике и полиграфии. Подавляющее большинство иллюстраций в этом учебнике подготовлены именно в виде монохромных изображений. Эта модель удобна для представления монохромных фотографий, деловой и художественной ахроматической графики, иллюстраций и схем.

Примечание

Нецветные фотографии принято называть черно-белыми. На самом деле они являются ахроматическими монохромными изображениями. Оттенки черного цвета в таких фотографиях образуются за счет различной степени потемнения мелко размолотых частиц светочувствительного препарата серебра, содержащегося в верхнем слое фотографической бумаги. Применение специальных окрашивающих препаратов (вирирование) позволяет переходить от ахроматической шкалы к хроматической, при этом черный цвет серебра заменяется равным ему по оттенку хроматическим цветом соли металла. Таким способом получают отпечатки с коричневым (сепия), синим и красным цветом переднего плана.

Ранее уже отмечалось, что монохромная модель включает в себя бесконечное число цветов. На практике в этом нет необходимости, поэтому непрерывную монохромную шкалу заменяют на дискретную, разбитую на конечное число участков, внутри каждого из которых цвет не меняется. В полиграфии монохромную шкалу принято разделять на 100 участков и обозначать оттенки целыми процентами. В компьютерной графике монохромную шкалу чаще разбивают на 256 участков, обозначая оттенок номером соответствующего ему участка (0 соответствует черному цвету, а 255 – белому).

Примечание

Выбор числа 256 обусловлен спецификой представления дескриптора цвета монохромной модели в памяти компьютера. 256 = 2

, следовательно, для хранения в памяти одного числа, меняющегося в диапазоне от 0 до 255, требуется 8 битов (один байт).

Число двоичных разрядов, которые отводятся в информационной модели цвета для хранения информации о цвете одного элемента изображения, называют глубиной цвета или цветовой разрешающей способностью модели. Глубина цвета измеряется в битах на элемент (в пиксельной модели изображения – в битах на пиксел, сокращенно bpp). Чтобы определить, какое количество цветов содержит цветовое пространство модели, достаточно возвести двойку в степень, равную глубине цвета. Следовательно, глубина цвета монохромной модели, в которой шкала разбита на 256 участков, равна восьми.

Примечание

Для штриховой модели с двумя базовыми цветами глубина цвета равна единице.

Помимо основного назначения (представления монохромных изображений), монохромная модель в компьютерной графике обеспечивает выполнение множества технологических операций. В виде монохромного изображения хранятся маски и альфа-каналы (см. разд. 3.5.4), каналы цвета (см. разд. 3.4.4) и деленные формы, получающиеся в процессе цветоделения (см. разд. 3.11.4). Рассмотренные в разд. 3.9.5 дуплексы представляют собой совокупность совмещенных при выводе монохромных изображений. Это обеспечивает исключительную важность монохромной модели цвета и монохромных изображений.

1.3.4. Модель индексированного цвета

В модели индексированного цвета цветовое пространство не является непрерывным. Так же, как в штриховой модели, число цветов здесь ограничено. Индексированной моделью цвета называется нумерованная совокупность цветов, составляющих палитру. Палитрой называется таблица образцов цвета, устанавливающая соответствие номера ячейки палитры (индекса) тому или иному цвету. Определение цвета каждого из образцов в палитре выполняется средствами аддитивной цветовой модели (см. разд. 1.3.5). Дескриптор цвета индексированной модели содержит в себе только номер цвета в палитре.

Число цветов в модели индексированного цвета может выбираться при составлении палитры. Как правило, размер палитры представляет собой целую степень двойки (4, 8, 16, 32, 64, 128 или 256 цветов). В палитру всегда включают черный и белый цвета. Одна из ячеек палитры резервируется под "прозрачный" цвет.

Примечание

При рендеринге изображения, в информационной модели которого используется индексированная модель цвета, элементы изображения, которым назначен прозрачный цвет, не обрабатываются – на их месте остается фоновое изображение.

В зависимости от размера палитры меняется глубина цвета индексированной модели. Она может составлять от двух до восьми битов на элемент изображения. При глубине цвета, равной единице, индексированная модель цвета превращается в штриховую.

Палитра индексированного изображения может быть стандартной или локальной. Стандартные палитры составляются заранее. Имеются стандартные палитры для наиболее распространенных операционных систем, обозревателей Web, шкалы градаций черного цвета и др. При работе со стандартными палитрами нет необходимости включать их в информационную модель изображения, поскольку они входят в состав прикладного и системного программного обеспечения.

Локальные палитры строятся на основе анализа конкретного изображения. Эта процедура может проводиться вручную, но чаще средствами графических редакторов. При автоматическом построении палитры выбирается ее размер и алгоритм выбора образцов цвета. На рис. 1.3.6 представлено одно и то же изображение, преобразованное в индексированную модель с различной глубиной цвета.

Рис. 1.3.6. Индексированная модель цвета: а – глубина цвета 6 битов; б – глубина цвета 5 битов; в – глубина цвета 4 бита

В компьютерной графике индексированная модель цвета применяется довольно давно. Первые цветные мониторы позволяли работать только с изображениями, представленными с помощью этой модели, причем глубина цвета была очень невелика, всего 4 бита, и существовали только фиксированные палитры. Сегодня изображения с индексированной моделью цвета еще остаются в анимации и WWW, но для экранных приложений (компьютерных игр, тренажеров, мультимедийных презентаций) разработаны более совершенные цветовые модели.

Имитация цвета

Размер палитры ограничивает число цветов, которые могут одновременно присутствовать в изображении на основе индексированной модели цвета. Однако при работе с пиксельными изображениями и достаточно малом размере пикселов визуально может восприниматься значительно больше цветов, чем имеется в палитре. Это достигается за счет имитации цвета (dithering) – приема, основанного на явлении визуального смыкания, описанном в разд. 3.1.1. При имитации цвета смежные пикселы изображения, окрашенные цветами, выбранными из палитры, визуально воспринимаются в виде более крупного пятна, причем его цвет, образованный за счет смешивания цветов нескольких пикселов, в палитре не присутствует. На рис. 1.3.7 в методических целях этот прием представлен для изображения со сравнительно большим размером пикселов.

Рис. 1.3.7. Имитация цвета для монохромного индексированного изображения: а – имитация отсутствует; б – имитация цвета по методу диффузии

Имитация цвета – важный прием, использующийся не только совместно с индексированной моделью, но и с описанными в последующих разделах полноцветными моделями.

1.3.5. Аддитивная модель

Аддитивными моделями цвета (от англ. add – складывать) называются цветовые модели, в которых световой поток со спектральным распределением, визуально воспринимающимся как нужный цвет, создается на основе операции пропорционального смешивания света, излучаемого тремя источниками. Схемы смешивания могут быть различными, одна из них представлена на рис. 1.3.8.

Рис. 1.3.8. Схема смешивания световых потоков в аддитивной модели цвета

Аддитивная модель цвета предполагает, что каждый из источников света имеет свое постоянное спектральное распределение, а его интенсивность регулируется.

Существуют две разновидности аддитивной модели цвета: аппаратно-зависимая и перцептивная. В аппаратно-зависимой модели цветовое пространство зависит от характеристик устройства вывода изображения (монитора, проектора). Из-за этого одно и то же изображение, представленное на основе такой модели, при воспроизведении на различных устройствах будет восприниматься визуально немного по-разному. Перцептивная модель построена с учетом особенностей зрения наблюдателя, а не технических характеристик устройства.

Модель RGB

Название этой модели происходит от аббревиатуры, состоящей из первых букв английских названий ее базовых цветов (см. разд. 1.3.2). Красный, зеленый и синий цвета были выбраны в качестве базовых потому, что эти волновые диапазоны видимой части спектра максимально удалены друг от друга. Кроме того, они близки к диапазонам, на которые избирательно реагируют колбочки сетчатки.

Цветовое пространство модели RGB непрерывно, но принято разбивать диапазоны интенсивности свечения источников на 256 интервалов. Нулевое значение соответствует отсутствию свечения, 255 – максимальной интенсивности, которую обеспечивает источник света. На рис. 1.3.9 цветовое пространство RGB представлено в виде куба в декартовой системе координат, в которой каждая из осей соответствует интенсивности свечения одного из источников базового цвета.

Рис. 1.3.9. Цветовое пространство модели RGB
<< 1 ... 7 8 9 10 11 12 13 14 15 ... 21 >>
На страницу:
11 из 21