если NPV < 0, то одновременно IRR < CC и PI < 1;
если NPV = 0, то одновременно IRR = CC и PI = 1.
Однако независимыми проектами не исчерпывается все многообразие доступных вариантов инвестирования средств. Весьма обыденной является ситуация, когда менеджеру необходимо сделать выбор из нескольких возможных для реализации инвестиционных проектов.
Прежде всего, необходимо подчеркнуть, методы, основанные на дисконтированных оценках, с теоретической точки зрения, являются более обоснованными, поскольку учитывают временную компоненту денежных потоков.
Таким образом, основной вывод состоит в том, что из всех рассмотренных критериев наиболее приемлемыми для принятия решений инвестиционного характера являются критерии NPV, PI и IRR. Несмотря на отмеченную взаимосвязь между этими показателями, при оценке альтернативных инвестиционных проектов проблема выбора критерия все же остается. Основная причина кроется в том, что NPV – абсолютный показатель, а РI и IRR – относительные.
Сравнительная характеристика критериев NPV и IRR
Как показали результаты многочисленных обследований практики принятия решений в области инвестиционной политики в условиях рынка, наиболее распространены критерии NPV и IRR. Однако возможны ситуации, когда эти критерии противоречат друг другу, например, при оценке альтернативных проектов.
Что касается показателя IRR, то он имеет ряд особенностей, причем некоторые из них осложняют применение этого критерия в анализе, а иногда делают это невозможным. Напротив, другие особенности критерия IRR дают основание сделать вывод о целесообразности его использования совместно с критерием NPV. Коротко охарактеризуем их.
1. В сравнительном анализе альтернативных проектов критерий IRR можно использовать достаточно условно. Так, если расчет критерия IRR для двух проектов показал, что его значение для проекта A больше, чем для проекта B, то чаще всего проект B в определенном смысле может рассматриваться как более предпочтительный, поскольку допускает большую гибкость в варьировании источниками финансирования инвестиций, цена которых может существенно различаться. Однако такое предпочтение носит весьма условный характер. Поскольку IRR является относительным показателем, на его основе невозможно сделать правильные выводы об альтернативных проектах с позиции их возможного вклада в увеличение капитала коммерческой организации; этот недостаток особенно выпукло проявляется, если проекты существенно различаются по величине денежных потоков.
2. При анализе многих инвестиционных проектов стандартного типа относительно большее значение IRR имеет специфическое значение.
Дело в том, что в основе анализа инвестиционных проектов заложены прогнозные оценки, которые по своей природе всегда стохастичны и потому выводы, основанные на таких оценках, связаны с определенным риском. Например, если были допущены ошибки в прогнозах и оценки значений денежного потока оказались завышены, что совершенно не исключено особенно в отношении последних лет реализации проекта, в какой степени это может повлиять на решение о приемлемости проекта? Точно такой же вопрос возникает и по поводу применения того или иного значения коэффициента дисконтирования.
Основной недостаток критерия NPV в том, что это абсолютный показатель, а потому он не может дать информации о так называемом «резерве безопасности проекта». Имеется в виду следующее: если допущена ошибка в прогнозе денежного потока или коэффициента дисконтирования, насколько велика опасность того, что проект, который ранее рассматривался как прибыльный, окажется убыточным?
Информацию о резерве безопасности проекта дают критерии IRR и PI. Так, при прочих равных условиях, чем больше IRR по сравнению с ценой капитала проекта, тем больше резерв безопасности. Что касается критерия PI, то правило здесь таково: чем больше значение PI превосходит единицу, тем больше резерв безопасности. Иными словами, с позиции риска можно сравнивать два проекта по критериям IRR и PI, но нельзя по критерию NPV.
Поэтому безусловная ориентация на критерий NPV не всегда оправданна. Высокое значение NPV само по себе не должно служить единственным и решающим аргументом при принятии решений инвестиционного характера, поскольку, во-первых, оно определяется масштабом проекта и, во-вторых, может быть сопряжено с достаточно высоким риском. Итак, высокое значение NPV не обязательно свидетельствует о целесообразности принятия проекта, поскольку не ясна степень риска, присущая этому значению NPV; напротив, высокое значение IRR во многих случаях указывает на наличие определенного резерва безопасности в отношении данного проекта.
3. Поскольку зависимость NPV от ставки дисконтирования r нелинейна, значение NPV может существенно зависеть от r, причем, степень этой зависимости различна и определяется динамикой элементов денежного потока.
4. Для проектов классического характера критерий IRR показывает лишь максимальный уровень затрат, который может быть ассоциирован с оцениваемым проектом. В частности, если цена инвестиций в оба альтернативных проекта меньше, чем значения IRR для них, выбор может быть сделан лишь с помощью дополнительных критериев. Более того, критерий IRR не позволяет различать ситуации, когда цена капитала меняется.
5. Одним из существенных недостатков критерия IRR является то, что в отличие от критерия NPV он не обладает свойством аддитивности, т. е. для двух инвестиционных проектов A и B, которые могут быть осуществлены одновременно:
NPV (A+В) = NPV (A) + NPV (B),
но IRR (A+В) ? IRR (A) + IRR (B).
6. В принципе не исключена ситуация, когда критерий IRR не с чем сравнивать. Это может быть в том случае, если нет основания использовать в анализе постоянную цену капитала. Если источник финансирования – банковская ссуда с фиксированной процентной ставкой, цена капитала не меняется, однако чаще всего проект финансируется из различных источников, поэтому для оценки используется средневзвешенная цена капитала фирмы, значение которой может варьировать в зависимости, в частности, от общеэкономической ситуации, текущих прибылей и т. п.
7. Критерий IRR совершенно непригоден для анализа неординарных инвестиционных потоков. В этом случае возникает как множественность значений IRR, так и неочевидность экономической интерпретации возникающих соотношений между показателем IRR и ценой капитала. Возможны также ситуации, когда положительного значения IRR попросту не существует.
Сравнительный анализ проектов различной продолжительности
В реальной жизни вполне вероятна ситуация, когда необходимо сравнивать проекты разной продолжительности. Речь может идти как о независимых, так и об альтернативных проектах. В частности, сравнение независимых проектов может иметь место, когда заранее не известен объем доступных источников финансирования; в этом случае проводится ранжирование проектов по степени их приоритетности, т. е. они как бы выстраиваются в очередь – по мере появления финансовых возможностей проекты последовательно принимаются к внедрению (Шевчук Д.А. Основы банковского дела. – Ростов-на-дону: Феникс, 2006).
Поскольку на практике необходимость сравнения проектов различной продолжительности возникает постоянно, разработаны специальные методы, позволяющие элиминировать влияние временного фактора. Это: а) метод цепного повтора в рамках общего срока действия проектов; б) метод бесконечного цепного повтора сравниваемых проектов; в) метод эквивалентного аннуитета. Рассмотрим последовательно логику процедур каждого метода.
Метод цепного повтора в рамках общего срока действия проектов
Пусть проекты A и B рассчитаны соответственно на i и j лет. В этом случае рекомендуется:
? найти наименьшее общее кратное сроков действия проектов N = НОК (i,j);
? рассматривая каждый из проектов как повторяющийся, рассчитать с учетом фактора времени суммарный NVP проектов A и B, реализуемых необходимое число раз в течение периода N;
? выбрать тот проект из исходных, для которого суммарный NPV повторяющегося потока имеет наибольшее значение.
Суммарный NPV повторяющегося потока находится по формуле:
где NPV(i) – чистый приведенный эффект исходного проекта;
i – продолжительность этого проекта;
r – коэффициент дисконтирования в долях единицы;
N – наименьшее общее кратное;
n – число повторений исходного проекта (оно характеризует число слагаемых в скобках).
Метод бесконечного цепного повтора сравниваемых проектов
Рассмотренную в предыдущем разделе методику можно упростить в вычислительном плане. Так, если анализируется несколько проектов, существенно различающихся по продолжительности реализации, расчеты могут быть достаточно утомительными. Их можно уменьшить, если предположить, что каждый из анализируемых проектов может быть реализован неограниченное число раз. В этом случае при n?? число слагаемых в формуле расчета NPV(i,n) будет стремиться к бесконечности, а значение NPV(i,?) может быть найдено по известной формуле для бесконечно убывающей геометрической прогрессии:
Из двух сравниваемых проектов проект, имеющий большее значение NPV(i,?), является предпочтительным.
Метод эквивалентного аннуитета
Этот метод в известной степени корреспондирует с методом бесконечного цепного повтора. Логика и последовательность вычислительных процедур таковы.
1. Рассчитывают NPV однократной реализации каждого проекта.
2. Для каждого проекта находят эквивалентный срочный аннуитет (ЕАА), приведенная стоимость которого в точности равна NPV проекта, иными словами, рассчитывают величину аннуитетного платежа (A).
3. Предполагая, что найденный аннуитет может быть заменен бессрочным аннуитетом с той же самой величиной аннуитетного платежа, рассчитывают приведенную стоимость бессрочного аннуитета PV
(?). Проект, имеющий большее значение PV
(?), является предпочтительным.
Методам, основанным на повторе исходных проектов, присуща определенная условность, заключающаяся в молчаливом распространении исходных условий на будущее, что, естественно, не всегда корректно. Поэтому к применению этих методов нужно подходить осознанно, в том смысле, что если исходным параметрам сравниваемых проектов свойственна достаточно высокая неопределенность, можно не принимать во внимание различие в продолжительности их действия и ограничиться расчетом стандартных критериев.
Анализ инвестиционных проектов в условиях инфляции
При оценке эффективности капитальных вложений необходимо, по возможности или если целесообразно, учитывать влияние инфляции. Это можно делать корректировкой на индекс инфляции (i) либо будущих поступлений, либо коэффициента дисконтирования. Наиболее корректной, но и более трудоемкой в расчетах является методика, предусматривающая корректировку всех факторов, влияющих на денежные потоки сравниваемых проектов.
Более простой является методика корректировки коэффициента дисконтирования на индекс инфляции. Прежде всего рассмотрим логику такой корректировки на простейшем примере.
Пример: