The Variation of Animals and Plants under Domestication — Volume 2 - читать онлайн бесплатно, автор Чарльз Роберт Дарвин, ЛитПортал
bannerbanner
Полная версияThe Variation of Animals and Plants under Domestication — Volume 2
Добавить В библиотеку
Оценить:

Рейтинг: 3

Поделиться
Купить и скачать

The Variation of Animals and Plants under Domestication — Volume 2

На страницу:
30 из 41
Настройки чтения
Размер шрифта
Высота строк
Поля

This work is not the proper place to show that wild plants of the same species, naturally growing at different altitudes or under different latitudes, become to a certain extent acclimatised, as is proved by the different behaviour of their seedlings when raised in another country. In my 'Origin of Species' I have alluded to some cases, and I could add many others. One instance must suffice: Mr. Grigor, of Forres (24/70. 'Gardener's Chronicle' 1865 page 699. Mr. G. Maw gives ('Gardener's Chronicle' 1870 page 895) a number of striking cases; he brought home from southern Spain and northern Africa several plants, which he cultivated in England alongside specimens from northern districts; and he found a great difference not only in their hardiness during the winter, but in the behaviour of some of them during the summer.), states that seedlings of the Scotch fir (Pinus sylvestris), raised from seed from the Continent and from the forests of Scotland, differ much. "The difference is perceptible in one-year-old, and more so in two-year- old seedlings; but the effects of the winter on the second year's growth almost uniformly make those from the Continent quite brown, and so damaged, that by the month of March they are quite unsaleable, while the plants from the native Scotch pine, under the same treatment, and standing alongside, although considerably shorter, are rather stouter and quite green, so that the beds of the one can be known from the other when seen from the distance of a mile." Closely similar facts have been observed with seedling larches.

[Hardy varieties would alone be valued or noticed in Europe; whilst tender varieties, requiring more warmth, would generally be neglected; but such occasionally arise. Thus Loudon (24/71. 'Arboretum et Fruticetum' volume 3 page 1376.) describes a Cornish variety of the elm which is almost an evergreen, and of which the shoots are often killed by the autumnal frosts, so that its timber is of little value. Horticulturists know that some varieties are much more tender than others: thus all the varieties of the broccoli are more tender than cabbages; but there is much difference in this respect in the sub-varieties of the broccoli; the pink and purple kinds are a little hardier than the white Cape broccoli, "but they are not to be depended on after the thermometer falls below 24 deg Fahr.;" the Walcheren broccoli is less tender than the Cape, and there are several varieties which will stand much severer cold than the Walcheren. (24/72. Mr. Robson in 'Journal of Horticulture' 1861 page 23.) Cauliflowers seed more freely in India than cabbages. (24/73. Dr. Bonavia 'Report of the Agri. — Hort. Soc. of Oudh' 1866.) To give one instance with flowers: eleven plants raised from a hollyhock, called the Queen of the Whites (24/74. 'Cottage Gardener' 1860 April 24 page 57.) were found to be much more tender than various other seedlings. It may be presumed that all tender varieties would succeed better under a climate warmer than ours. With fruit-trees, it is well known that certain varieties, for instance of the peach, stand forcing in a hot-house better than others; and this shows either pliability of organisation or some constitutional difference. The same individual cherry-tree, when forced, has been observed during successive years gradually to change its period of vegetation. (24/75. 'Gardener's Chronicle' 1841 page 291.) Few pelargoniums can resist the heat of a stove, but Alba Multiflora will, as a most skilful gardener asserts, "stand pine-apple top and bottom heat the whole winter; without looking any more drawn than if it had stood in a common greenhouse; and Blanche Fleur seems as if it had been made on purpose for growing in winter, like many bulbs, and to rest all summer." (24/76. Mr. Beaton in 'Cottage Gardener' March 20, 1860 page 377. Queen Mab will also stand stove heat. See 'Gardener's Chronicle' 1845 page 226.) There can hardly be a doubt that the Alba Multiflora pelargonium must have a widely different constitution from that of most other varieties of this plant; it would probably withstand even an equatorial climate.

We have seen that according to Labat the vine and wheat require acclimatisation in order to succeed in the West Indies. Similar facts have been observed at Madras: "two parcels of mignonette-seed, one direct from Europe, the other saved at Bangalore (of which the mean temperature is much below that of Madras), were sown at the same time: they both vegetated equally favourably, but the former all died off a few days after they appeared above ground; the latter still survive, and are vigorous, healthy plants." "So again, turnip and carrot seed saved at Hyderabad are found to answer better at Madras than seed from Europe or from the Cape of Good Hope." (24/77. 'Gardener's Chronicle' 1841 page 439.) Mr. J. Scott of the Calcutta Botanic Gardens, informs me that seeds of the sweet-pea (Lathyrus odoratus) imported from England produce plants, with thick, rigid stems and small leaves, which rarely blossom and never yield seed; plants raised from French seed blossom sparingly, but all the flowers are sterile; on the other hand, plants raised from sweet-peas grown near Darjeeling in Upper India, but originally derived from England, can be successfully cultivated on the plains of India; for they flower and seed profusely, and their stems are lax and scandent. In some of the foregoing cases, as Dr. Hooker has remarked to me, the greater success may perhaps be attributed to the seeds having been more fully ripened under a more favourable climate; but this view can hardly be extended to so many cases, including plants, which, from being cultivated under a climate hotter than their native one, become fitted for a still hotter climate. We may therefore safely conclude that plants can to a certain extent become accustomed to a climate either hotter or colder than their own; although the latter cases have been more frequently observed.]

We will now consider the means by which acclimatisation may be effected, namely, through the appearance of varieties having a different constitution, and through the effects of habit. In regard to new varieties, there is no evidence that a change in the constitution of the offspring necessarily stands in any direct relation with the nature of the climate inhabited by the parents. On the contrary, it is certain that hardy and tender varieties of the same species appear in the same country. New varieties thus spontaneously arising become fitted to slightly different climates in two different ways; firstly, they may have the power, either as seedlings or when full-grown, of resisting intense cold, as with the Moscow pear, or of resisting intense heat, as with some kinds of Pelargonium, or the flowers may withstand severe frost, as with the Forelle pear. Secondly, plants may become adapted to climates widely different from their own, from flowering and fruiting either earlier or later in the season. In both these cases the power of acclimatisation by man consists simply in the selection and preservation of new varieties. But without any direct intention on his part of securing a hardier variety, acclimatisation may be unconsciously effected by merely raising tender plants from seed, and by occasionally attempting their cultivation further and further northwards, as in the case of maize, the orange and the peach.

How much influence ought to be attributed to inherited habit or custom in the acclimatisation of animals and plants is a much more difficult question. In many cases natural selection can hardly have failed to have come into play and complicated the result. It is notorious that mountain sheep resist severe weather and storms of snow which would destroy lowland breeds; but then mountain sheep have been thus exposed from time immemorial, and all delicate individuals will have been destroyed, and the hardiest preserved. So with the Arrindy silk-moths of China and India; who can tell how far natural selection may have taken a share in the formation of the two races, which are now fitted for such widely different climates? It seems at first probable that the many fruit-trees which are so well fitted for the hot summers and cold winters of North America, in contrast with their poor success under our climate, have become adapted through habit; but when we reflect on the multitude of seedlings annually raised in that country, and that none would succeed unless born with a fitting constitution, it is possible that mere habit may have done nothing towards their acclimatisation. On the other hand, when we hear that Merino sheep, bred during no great number of generations at the Cape of Good Hope — that some European plants raised during only a few generations in the cooler parts of India, withstand the hotter parts of that country much better than the sheep or seeds imported directly from England, we must attribute some influence to habit. We are led to the same conclusion when we hear from Naudin (24/78. Quoted by Asa Gray in 'Am. Journ. of Sc.' 2nd series January 1865 page 106.) that the races of melons, squashes, and gourds, which have long been cultivated in Northern Europe, are comparatively more precocious, and need much less heat for maturing their fruit, than the varieties of the same species recently brought from tropical regions. In the reciprocal conversion of summer and winter wheat, barley, and vetches into each other, habit produces a marked effect in the course of a very few generations. The same thing apparently occurs with the varieties of maize, which, when carried from the Southern States of America, or into Germany, soon became accustomed to their new homes. With vine-plants taken to the West Indies from Madeira, which are said to succeed better than plants brought directly from France, we have some degree of acclimatisation in the individual, independently of the production of new varieties by seed.

The common experience of agriculturists is of some value, and they often advise persons to be cautious in trying the productions of one country in another. The ancient agricultural writers of China recommend the preservation and cultivation of the varieties peculiar to each country. During the classical period, Columella wrote, "Vernaculum pecus peregrino longe praestantius est." (24/79. For China see 'Memoire sur les Chinois' tome 11 1786 page 60. Columella is quoted by Carlier in 'Journal de Physique' tome 24 1784.)

I am aware that the attempt to acclimatise either animals or plants has been called a vain chimera. No doubt the attempt in most cases deserves to be thus called, if made independently of the production of new varieties endowed with a different constitution. With plants propagated by buds, habit rarely produces any effect; it apparently acts only through successive seminal generations. The laurel, bay, laurestinus, etc., and the Jerusalem artichoke, which are propagated by cuttings or tubers, are probably now as tender in England as when first introduced; and this appears to be the case with the potato, which until recently was seldom multiplied by seed. With plants propagated by seed, and with animals, there will be little or no acclimatisation unless the hardier individuals are either intentionally or unconsciously preserved. The kidney-bean has often been advanced as an instance of a plant which has not become hardier since its first introduction into Britain. We hear, however, on excellent authority (24/80. Messrs. Hardy and Son in 'Gardener's Chronicle' 1856 page 589.) that some very fine seed, imported from abroad, produced plants "which blossomed most profusely, but were nearly all but abortive, whilst plants grown alongside from English seed podded abundantly;" and this apparently shows some degree of acclimatisation in our English plants. We have also seen that seedlings of the kidney-bean occasionally appear with a marked power of resisting frost; but no one, as far as I can hear, has ever separated such hardy seedlings, so as to prevent accidental crossing, and then gathered their seed, and repeated the process year after year. It may, however, be objected with truth that natural selection ought to have had a decided effect on the hardiness of our kidney- beans; for the tenderest individuals must have been killed during every severe spring, and the hardier preserved. But it should be borne in mind that the result of increased hardiness would simply be that gardeners, who are always anxious for as early a crop as possible, would sow their seed a few days earlier than formerly. Now, as the period of sowing depends much on the soil and elevation of each district, and varies with the season; and as new varieties have often been imported from abroad, can we feel sure that our kidney-beans are not somewhat hardier? I have not been able, by searching old horticultural works, to answer this question satisfactorily.

On the whole the facts now given show that, though habit does something towards acclimatisation, yet that the appearance of constitutionally different individuals is a far more effective agent. As no single instance has been recorded either with animals or plants of hardier individuals having been long and steadily selected, though such selection is admitted to be indispensable for the improvement of any other character, it is not surprising that man has done little in the acclimatisation of domesticated animals and cultivated plants. We need not, however, doubt that under nature new races and new species would become adapted to widely different climates, by variation, aided by habit, and regulated by natural selection.

[ARRESTS OF DEVELOPMENT: RUDIMENTARY AND ABORTED ORGANS.

Modifications of structure from arrested development, so great or so serious as to deserve to be called monstrosities, are not infrequent with domesticated animals, but, as they differ much from any normal structure, they require only a passing notice. Thus the whole head may be represented by a soft nipple-like projection, and the limbs by mere papillae. These rudiments of limbs are sometimes inherited, as has been observed in a dog. (24/81. Isid. Geoffroy Saint-Hilaire 'Hist. Nat. des Anomalies' 1836 tome 2 pages 210, 223, 224, 395; 'Philosoph. Transact.' 1775 page 313.)

Many lesser anomalies appear to be due to arrested development. What the cause of the arrest may be, we seldom know, except in the case of direct injury to the embryo. That the cause does not generally act at an extremely early embryonic period we may infer from the affected organ seldom being wholly aborted, — a rudiment being generally preserved. The external ears are represented by mere vestiges in a Chinese breed of sheep; and in another breed, the tail is reduced "to a little button, suffocated in a manner, by fat." (24/82. Pallas quoted by Youatt on 'Sheep' page 25.) In tailless dogs and cats a stump is left. In certain breeds of fowls the comb and wattles are reduced to rudiments; in the Cochin-China breed scarcely more than rudiments of spurs exist. With polled Suffolk cattle, "rudiments of horns can often be felt at an early age" (24/83. Youatt on 'Cattle' 1834 page 174.); and with species in a state of nature, the relatively great development of rudimentary organs at an early period of life is highly characteristic of such organs. With hornless breeds of cattle and sheep, another and singular kind of rudiment has been observed, namely, minute dangling horns attached to the skin alone, and which are often shed and grow again. With hornless goats, according to Desmarest (24/84. 'Encyclop. Method.' 1820 page 483: see page 500, on the Indian zebu casting its horns. Similar cases in European cattle were given in the third chapter.), the bony protuberance which properly supports the horn exists as a mere rudiment.

With cultivated plants it is far from rare to find the petals, stamens, and pistils represented by rudiments, like those observed in natural species. So it is with the whole seed in many fruits; thus, near Astrakhan there is a grape with mere traces of seeds, "so small and lying so near the stalk that they are not perceived in eating the grape." (24/85. Pallas 'Travels' English Translat. volume 1 page 243.) In certain varieties of the gourd, the tendrils, according to Naudin, are represented by rudiments or by various monstrous growths. In the broccoli and cauliflower the greater number of the flowers are incapable of expansion, and include rudimentary organs. In the Feather hyacinth (Muscari comosum) in its natural state the upper and central flowers are brightly coloured but rudimentary; under cultivation the tendency to abortion travels downwards and outwards, and all the flowers become rudimentary; but the abortive stamens and pistils are not so small in the lower as in the upper flowers. In the Viburnum opulus, on the other hand, the outer flowers naturally have their organs of fructification in a rudimentary state, and the corolla is of large size; under cultivation, the change spreads to the centre, and all the flowers become affected. In the compositae, the so- called doubling of the flowers consists in the greater development of the corolla of the central florets, generally accompanied with some degree of sterility; and it has been observed (24/86. Mr. Beaton in 'Journal of Horticulture' May 21, 1861 page 133.) that the progressive doubling invariably spreads from the circumference to the centre, — that is, from the ray florets, which so often include rudimentary organs, to those of the disc. I may add, as bearing on this subject, that with Asters, seeds taken from the florets of the circumference have been found to yield the greatest number of double flowers. (24/87. Lecoq 'De la Fecondation' 1862 page 233.) In the above cases we have a natural tendency in certain parts to be rudimentary, and this under culture spreads either to, or from, the axis of the plant. It deserves notice, as showing how the same laws govern the changes which natural species and artificial varieties undergo, that in the species of Carthamus, one of the Compositae, a tendency to the abortion of the pappus may be traced extending from the circumference to the centre of the disc as in the so-called doubling of the flowers in the members of the same family. Thus, according to A. de Jussieu (24/88. 'Annales du Museum' tome 6 page 319.), the abortion is only partial in Carthamus creticus, but more extended in C. lanatus; for in this species only two or three of the central seeds are furnished with a pappus, the surrounding seeds being either quite naked or furnished with a few hairs; and lastly in C. tinctorius, even the central seeds are destitute of pappus, and the abortion is complete.

With animals and plants under domestication, when an organ disappears, leaving only a rudiment, the loss has generally been sudden, as with hornless and tailless breeds; and such cases may be ranked as inherited monstrosities. But in some few cases the loss has been gradual, and has been effected partly by selection, as with the rudimentary combs and wattles of certain fowls. We have also seen that the wings of some domesticated birds have been slightly reduced by disuse, and the great reduction of the wings in certain silk-moths, with mere rudiments left, has probably been aided by disuse.]

With species in a state of nature, rudimentary organs are extremely common. Such organs are generally variable, as several naturalists have observed; for, being useless, they are not regulated by natural selection, and they are more or less liable to reversion. The same rule certainly holds good with parts which have become rudimentary under domestication. We do not know through what steps under nature rudimentary organs have passed in being reduced to their present condition; but we so incessantly see in species of the same group the finest gradations between an organ in a rudimentary and perfect state, that we are led to believe that the passage must have been extremely gradual. It may be doubted whether a change of structure so abrupt as the sudden loss of an organ would ever be of service to a species in a state of nature; for the conditions to which all organisms are closely adapted usually change very slowly. Even if an organ did suddenly disappear in some one individual by an arrest of development, intercrossing with the other individuals of the same species would tend to cause its partial reappearance; so that its final reduction could only be effected by some other means. The most probable view is, that a part which is now rudimentary, was formerly, owing to changed habits of life, used less and less, being at the same time reduced in size by disuse, until at last it became quite useless and superfluous. But as most parts or organs are not brought into action during an early period of life, disuse or decreased action will not lead to their reduction until the organism arrives at a somewhat advanced age; and from the principle of inheritance at corresponding ages the reduction will be transmitted to the offspring at the same advanced stage of growth. The part or organ will thus retain its full size in the embryo, as we know to be the case with most rudiments. As soon as a part becomes useless, another principle, that of economy of growth, will come into play, as it would be an advantage to an organism exposed to severe competition to save the development of any useless part; and individuals having the part less developed will have a slight advantage over others. But, as Mr. Mivart has justly remarked, as soon as a part is much reduced, the saving from its further reduction will be utterly insignificant; so that this cannot be effected by natural selection. This manifestly holds good if the part be formed of mere cellular tissue, entailing little expenditure of nutriment. How then can the further reduction of an already somewhat reduced part be effected? That this has occurred repeatedly under Nature is shown by the many gradations which exist between organs in a perfect state and the merest vestiges of them. Mr. Romanes (24/89. I suggested in 'Nature' (volume 8 pages 432, 505) that with organisms subjected to unfavourable conditions all the parts would tend towards reduction, and that under such circumstances any part which was not kept up to its standard size by natural selection would, owing to intercrossing, slowly but steadily decrease. In three subsequent communications to 'Nature' (March 12, April 9, and July 2, 1874), Mr. Romanes gives his improved view.) has, I think, thrown much light on this difficult problem. His view, as far as it can be given in a few words, is as follows: all parts are somewhat variable and fluctuate in size round an average point. Now, when a part has already begun from any cause to decrease, it is very improbable that the variations should be as great in the direction of increase as of diminution; for the previous reduction shows that circumstances have not been favourable for its development; whilst there is nothing to check variations in the opposite direction. If this be so, the long continued crossing of many individuals furnished with an organ which fluctuates in a greater degree towards decrease than towards increase, will slowly but steadily lead to its diminution. With respect to the complete and absolute abortion of a part, a distinct principle, which will be discussed in the chapter on pangenesis, probably comes into action.

With animals and plants reared by man there is no severe or recurrent struggle for existence, and the principle of economy will not come into action, so that the reduction of an organ will not thus be aided. So far, indeed, is this from being the case, that in some few instances organs, which are naturally rudimentary in the parent-species, become partially redeveloped in the domesticated descendants. Thus cows, like most other ruminants, properly have four active and two rudimentary mamma; but in our domesticated animals, the latter occasionally become considerably developed and yield milk. The atrophied mammae, which, in male domesticated animals, including man, have in some rare cases grown to full size and secreted milk, perhaps offer an analogous case. The hind feet of dogs naturally include rudiments of a fifth toe, and in certain large breeds these toes, though still rudimentary, become considerably developed and are furnished with claws. In the common Hen, the spurs and comb are rudimentary, but in certain breeds these become, independently of age or disease of the ovaria, well developed. The stallion has canine teeth, but the mare has only traces of the alveoli, which, as I am informed by the eminent veterinarian Mr. G.T. Brown, frequently contain minute irregular nodules of bone. These nodules, however, sometimes become developed into imperfect teeth, protruding through the gums and coated with enamel; and occasionally they grow to a fourth or even a third of the length of the canines in the stallion. With plants I do not know whether the redevelopment of rudimentary organs occurs more frequently under culture than under nature. Perhaps the pear-tree may be a case in point, for when wild it bears thorns, which consist of branches in a rudimentary condition and serve as a protection, but, when the tree is cultivated, they are reconverted into branches.

На страницу:
30 из 41