These effects are very curious. The calcareous matter is altered to the depth of about a foot beneath the line of junction; and a most perfect gradation can be traced, from loosely aggregated, small, particles of shells, corallines, and Nulliporae, into a rock, in which not a trace of mechanical origin can be discovered, even with a microscope. Where the metamorphic change has been greatest, two varieties occur. The first is a hard, compact, white, fine-grained rock, striped with a few parallel lines of black volcanic particles, and resembling a sandstone, but which, upon close examination, is seen to be crystallised throughout, with the cleavages so perfect that they can be readily measured by the reflecting goniometer. In specimens, where the change has been less complete, when moistened and examined under a strong lens, the most interesting gradation can be traced, some of the rounded particles retaining their proper forms, and others insensibly melting into the granulo-crystalline paste. The weathered surface of this stone, as is so frequently the case with ordinary limestones, assumes a brick-red colour.
The second metamorphosed variety is likewise a hard rock, but without any crystalline structure. It consists of a white, opaque, compact, calcareous stone, thickly mottled with rounded, though regular, spots of a soft, earthy, ochraceous substance. This earthy matter is of a pale yellowish- brown colour, and appears to be a mixture of carbonate of lime with iron; it effervesces with acids, is infusible, but blackens under the blowpipe, and becomes magnetic. The rounded form of the minute patches of earthy substance, and the steps in the progress of their perfect formation, which can be followed in a suit of specimens, clearly show that they are due either to some power of aggregation in the earthy particles amongst themselves, or more probably to a strong attraction between the atoms of the carbonate of line, and consequently to the segregation of the earthy extraneous matter. I was much interested by this fact, because I have often seen quartz rocks (for instance, in the Falkland Islands, and in the lower Silurian strata of the Stiper-stones in Shropshire), mottled in a precisely analogous manner, with little spots of a white, earthy substance (earthy feldspar?); and these rocks, there was good reason to suppose, had undergone the action of heat, – a view which thus receives confirmation. This spotted structure may possibly afford some indication in distinguishing those formations of quartz, which owe their present structure to igneous action, from those produced by the agency of water alone; a source of doubt, which I should think from my own experience, that most geologists, when examining arenaceo-quartzose districts must have experienced.
The lowest and most scoriaceous part of the lava, in rolling over the sedimentary deposit at the bottom of the sea, has caught up large quantities of calcareous matter, which now forms a snow-white, highly crystalline basis to a breccia, including small pieces of black, glossy scoriae. A little above this, where the lime is less abundant, and the lava more compact, numerous little balls, composed of spicula of calcareous spar, radiating from common centres, occupy the interstices. In one part of Quail Island, the lime has thus been crystallised by the heat of the superincumbent lava, where it is only thirteen feet in thickness; nor had the lava been originally thicker, and since reduced by degradation, as could be told from the degree of cellularity of its surface. I have already observed that the sea must have been shallow in which the calcareous deposit was accumulated. In this case, therefore, the carbonic acid gas has been retained under a pressure, insignificant compared with that (a column of water, 1,708 feet in height) originally supposed by Sir James Hall to be requisite for this end: but since his experiments, it has been discovered that pressure has less to do with the retention of carbonic acid gas, than the nature of the circumjacent atmosphere; and hence, as is stated to be the case by Mr. Faraday, masses of limestone are sometimes fused and crystallised even in common limekilns. (I am much indebted to Mr. E.W. Brayley in having given me the following references to papers on this subject: Faraday in the "Edinburgh New Philosophical Journal" volume 15 page 398; Gay-Lussac in "Annales de Chem. et Phys." tome 63 page 219 translated in the "London and Edinburgh Philosophical Magazine" volume 10 page 496.) Carbonate of lime can be heated to almost any degree, according to Faraday, in an atmosphere of carbonic acid gas, without being decomposed; and Gay-Lussac found that fragments of limestone, placed in a tube and heated to a degree, not sufficient by itself to cause their decomposition, yet immediately evolved their carbonic acid, when a stream of common air or steam was passed over them: Gay-Lussac attributes this to the mechanical displacement of the nascent carbonic acid gas. The calcareous matter beneath the lava, and especially that forming the crystalline spicula between the interstices of the scoriae, although heated in an atmosphere probably composed chiefly of steam, could not have been subjected to the effects of a passing stream; and hence it is, perhaps, that they have retained their carbonic acid, under a small amount of pressure.
The fragments of scoriae, embedded in the crystalline calcareous basis, are of a jet black colour, with a glossy fracture like pitchstone. Their surfaces, however, are coated with a layer of a reddish-orange, translucent substance, which can easily be scratched with a knife; hence they appear as if overlaid by a thin layer of rosin. Some of the smaller fragments are partially changed throughout into this substance: a change which appears quite different from ordinary decomposition. At the Galapagos Archipelago (as will be described in a future chapter), great beds are formed of volcanic ashes and particles of scoriae, which have undergone a closely similar change.
THE EXTENT AND HORIZONTALITY OF THE CALCAREOUS STRATUM.
(FIGURE 2: SIGNAL POST HILL. (Section with A low and C high.)
A. – Ancient volcanic rocks.
B. – Calcareous stratum.
C. – Upper basaltic lava.)
The upper line of surface of the calcareous stratum, which is so conspicuous from being quite white and so nearly horizontal, ranges for miles along the coast, at the height of about sixty feet above the sea. The sheet of basalt, by which it is capped, is on an average eighty feet in thickness. Westward of Porto Praya beyond Red Hill, the white stratum with the superincumbent basalt is covered up by more recent streams. Northward of Signal Post Hill, I could follow it with my eye, trending away for several miles along the sea cliffs. The distance thus observed is about seven miles; but I cannot doubt from its regularity that it extends much farther. In some ravines at right angles to the coast, it is seen gently dipping towards the sea, probably with the same inclination as when deposited round the ancient shores of the island. I found only one inland section, namely, at the base of the hill marked A, where, at the height of some hundred feet, this bed was exposed; it here rested on the usual compact augitic rock associated with wacke, and was covered by the widespread sheet of modern basaltic lava. Some exceptions occur to the horizontality of the white stratum: at Quail Island, its upper surface is only forty feet above the level of the sea; here also the capping of lava is only between twelve and fifteen feet in thickness; on the other hand, at the north-east side of Porto Praya harbour, the calcareous stratum, as well as the rock on which it rests, attain a height above the average level: the inequality of level in these two cases is not, as I believe, owing to unequal elevation, but to original irregularities at the bottom of the sea. Of this fact, at Quail Island, there was clear evidence in the calcareous deposit being in one part of much greater than the average thickness, and in another part being entirely absent; in this latter case, the modern basaltic lavas rested directly on those of more ancient origin.
Under Signal Post Hill, the white stratum dips into the sea in a remarkable manner. This hill is conical, 450 feet in height, and retains some traces of having had a crateriform structure; it is composed chiefly of matter erupted posteriorly to the elevation of the great basaltic plain, but partly of lava of apparently submarine origin and of considerable antiquity. The surrounding plain, as well as the eastern flank of this hill, has been worn into steep precipices, overhanging the sea. In these precipices, the white calcareous stratum may be seen, at the height of about seventy feet above the beach, running for some miles both northward and southward of the hill, in a line appearing to be perfectly horizontal; but for a space of a quarter of a mile directly under the hill, it dips into the sea and disappears. On the south side the dip is gradual, on the north side it is more abrupt, as is shown in Figure 2. As neither the calcareous stratum, nor the superincumbent basaltic lava (as far as the latter can be distinguished from the more modern ejections), appears to thicken as it dips, I infer that these strata were not originally accumulated in a trough, the centre of which afterwards became a point of eruption; but that they have subsequently been disturbed and bent. We may suppose either that Signal Post Hill subsided after its elevation with the surrounding country, or that it never was uplifted to the same height with it. This latter seems to me the most probable alternative, for during the slow and equable elevation of this portion of the island, the subterranean motive power, from expending part of its force in repeatedly erupting volcanic matter from beneath this point, would, it is likely, have less force to uplift it. Something of the same kind seems to have occurred near Red Hill, for when tracing upwards the naked streams of lava from near Porto Praya towards the interior of the island, I was strongly induced to suspect, that since the lava had flowed, the slope of the land had been slightly modified, either by a small subsidence near Red Hill, or by that portion of the plain having been uplifted to a less height during the elevation of the whole area.
THE BASALTIC LAVA, SUPERINCUMBENT ON THE CALCAREOUS DEPOSIT.
This lava is of a pale grey colour, fusing into a black enamel; its fracture is rather earthy and concretionary; it contains olivine in small grains. The central parts of the mass are compact, or at most crenulated with a few minute cavities, and are often columnar. At Quail Island this structure was assumed in a striking manner; the lava in one part being divided into horizontal laminae, which became in another part split by vertical fissures into five-sided plates; and these again, being piled on each other, insensibly became soldered together, forming fine symmetrical columns. The lower surface of the lava is vesicular, but sometimes only to the thickness of a few inches; the upper surface, which is likewise vesicular, is divided into balls, frequently as much as three feet in diameter, made up of concentric layers. The mass is composed of more than one stream; its total thickness being, on an average, about eighty feet: the lower portion has certainly flowed beneath the sea, and probably likewise the upper portion. The chief part of this lava has flowed from the central districts, between the hills marked A, B, C, etc., in the woodcut- map. The surface of the country, near the coast, is level and barren; towards the interior, the land rises by successive terraces, of which four, when viewed from a distance, could be distinctly counted.
VOLCANIC ERUPTIONS SUBSEQUENT TO THE ELEVATION OF THE COASTLAND; THE EJECTED MATTER ASSOCIATED WITH EARTHY LIME.
These recent lavas have proceeded from those scattered, conical, reddish- coloured hills, which rise abruptly from the plain-country near the coast. I ascended some of them, but will describe only one, namely, RED HILL, which may serve as a type of its class, and is remarkable in some especial respects. Its height is about six hundred feet; it is composed of bright red, highly scoriaceous rock of a basaltic nature; on one side of its summit there is a hollow, probably the last remnant of a crater. Several of the other hills of this class, judging from their external forms, are surmounted by much more perfect craters. When sailing along the coast, it was evident that a considerable body of lava had flowed from Red Hill, over a line of cliff about one hundred and twenty feet in height, into the sea: this line of cliff is continuous with that forming the coast, and bounding the plain on both sides of this hill; these streams, therefore, were erupted, after the formation of the coast-cliffs, from Red Hill, when it must have stood, as it now does, above the level of the sea. This conclusion accords with the highly scoriaceous condition of all the rock on it, appearing to be of subaerial formation: and this is important, as there are some beds of calcareous matter near its summit, which might, at a hasty glance, have been mistaken for a submarine deposit. These beds consist of white, earthy, carbonate of lime, extremely friable so as to be crushed with the least pressure; the most compact specimens not resisting the strength of the fingers. Some of the masses are as white as quicklime, and appear absolutely pure; but on examining them with a lens, minute particles of scoriae can always be seen, and I could find none which, when dissolved in acids, did not leave a residue of this nature. It is, moreover, difficult to find a particle of the lime which does not change colour under the blowpipe, most of them even becoming glazed. The scoriaceous fragments and the calcareous matter are associated in the most irregular manner, sometimes in obscure beds, but more generally as a confused breccia, the lime in some parts and the scoriae in others being most abundant. Sir H. De la Beche has been so kind as to have some of the purest specimens analysed, with a view to discover, considering their volcanic origin, whether they contained much magnesia; but only a small portion was found, such as is present in most limestones.
Fragments of the scoriae embedded in the calcareous mass, when broken, exhibit many of their cells lined and partly filled with a white, delicate, excessively fragile, moss-like, or rather conferva-like, reticulation of carbonate of lime. These fibres, examined under a lens of one-tenth of an inch focal distance, appear cylindrical; they are rather above one- thousandth of an inch in diameter; they are either simply branched, or more commonly united into an irregular mass of network, with the meshes of very unequal sizes and of unequal numbers of sides. Some of the fibres are thickly covered with extremely minute spicula, occasionally aggregated into little tuffs; and hence they have a hairy appearance. These spicula are of the same diameter throughout their length; they are easily detached, so that the object-glass of the microscope soon becomes scattered over with them. Within the cells of many fragments of the scoria, the lime exhibits this fibrous structure, but generally in a less perfect degree. These cells do not appear to be connected with one another. There can be no doubt, as will presently be shown, that the lime was erupted, mingled with the lava in its fluid state, and therefore I have thought it worth while to describe minutely this curious fibrous structure, of which I know nothing analogous. From the earthy condition of the fibres, this structure does not appear to be related to crystallisation.
Other fragments of the scoriaceous rock from this hill, when broken, are often seen marked with short and irregular white streaks, which are owing to a row of separate cells being partly, or quite, filled with white calcareous powder. This structure immediately reminded me of the appearance in badly kneaded dough, of balls and drawn-out streaks of flour, which have remained unmixed with the paste; and I cannot doubt that small masses of the lime, in the same manner remaining unmixed with the fluid lava, have been drawn out when the whole was in motion. I carefully examined, by trituration and solution in acids, pieces of the scoriae, taken from within half-an-inch of those cells which were filled with the calcareous powder, and they did not contain an atom of free lime. It is obvious that the lava and lime have on a large scale been very imperfectly mingled; and where small portions of the lime have been entangled within a piece of the viscid lava, the cause of their now occupying, in the form of a powder or of a fibrous reticulation, the vesicular cavities, is, I think, evidently due to the confined gases having most readily expanded at the points where the incoherent lime rendered the lava less adhesive.
A mile eastward of the town of Praya, there is a steep-sided gorge, about one hundred and fifty yards in width, cutting through the basaltic plain and underlying beds, but since filled up by a stream of more modern lava. This lava is dark grey, and in most parts compact and rudely columnar; but at a little distance from the coast, it includes in an irregular manner a brecciated mass of red scoriae mingled with a considerable quantity of white, friable, and in some parts, nearly pure earthy lime, like that on the summit of Red Hill. This lava, with its entangled lime, has certainly flowed in the form of a regular stream; and, judging from the shape of the gorge, towards which the drainage of the country (feeble though it now be) still is directed, and from the appearance of the bed of loose water-worn blocks with their interstices unfilled, like those in the bed of a torrent, on which the lava rests, we may conclude that the stream was of subaerial origin. I was unable to trace it to its source, but, from its direction, it seemed to have come from Signal Post Hill, distant one mile and a quarter, which, like Red Hill, has been a point of eruption subsequent to the elevation of the great basaltic plain. It accords with this view, that I found on Signal Post Hill, a mass of earthy, calcareous matter of the same nature, mingled with scoriae. I may here observe that part of the calcareous matter forming the horizontal sedimentary bed, especially the finer matter with which the embedded fragments of rock are whitewashed, has probably been derived from similar volcanic eruptions, as well as from triturated organic remains: the underlying, ancient, crystalline rocks, also, are associated with much carbonate of lime, filling amygdaloidal cavities, and forming irregular masses, the nature of which latter I was unable to understand.
Considering the abundance of earthy lime near the summit of Red Hill, a volcanic cone six hundred feet in height, of subaerial growth, – considering the intimate manner in which minute particles and large masses of scoriae are embedded in the masses of nearly pure lime, and on the other hand, the manner in which small kernels and streaks of the calcareous powder are included in solid pieces of the scoriae, – considering, also, the similar occurrence of lime and scoriae within a stream of lava, also supposed, with good reason, to have been of modern subaerial origin, and to have flowed from a hill, where earthy lime also occurs: I think, considering these facts, there can be no doubt that the lime has been erupted, mingled with the molten lava. I am not aware that any similar case has been described: it appears to me an interesting one, inasmuch as most geologists must have speculated on the probable effects of a volcanic focus, bursting through deep-seated beds of different mineralogical composition. The great abundance of free silex in the trachytes of some countries (as described by Beudant in Hungary, and by P. Scrope in the Panza Islands), perhaps solves the inquiry with respect to deep-seated beds of quartz; and we probably here see it answered, where the volcanic action has invaded subjacent masses of limestone. One is naturally led to conjecture in what state the now earthy carbonate of lime existed, when ejected with the intensely heated lava: from the extreme cellularity of the scoriae on Red Hill, the pressure cannot have been great, and as most volcanic eruptions are accompanied by the emission of large quantities of steam and other gases, we here have the most favourable conditions, according to the views at present entertained by chemists, for the expulsion of the carbonic acid. (Whilst deep beneath the surface, the carbonate of lime was, I presume, in a fluid state. Hutton, it is known, thought that all amygdaloids were produced by drops of molten limestone floating in the trap, like oil in water: this no doubt is erroneous, but if the matter forming the summit of Red Hill had been cooled under the pressure of a moderately deep sea, or within the walls of a dike, we should, in all probability, have had a trap rock associated with large masses of compact, crystalline, calcareous spar, which, according to the views entertained by many geologists, would have been wrongly attributed to subsequent infiltration.) Has the slow re- absorption of this gas, it may be asked, given to the lime in the cells of the lava, that peculiar fibrous structure, like that of an efflorescing salt? Finally, I may remark on the great contrast in appearance between this earthy lime, which must have been heated in a free atmosphere of steam and other gases, while the white, crystalline, calcareous spar, produced by a single thin sheet of lava (as at Quail Island) rolling over similar earthy lime and the debris of organic remains, at the bottom of a shallow sea.
SIGNAL POST HILL.
This hill has already been several times mentioned, especially with reference to the remarkable manner in which the white calcareous stratum, in other parts so horizontal (Figure 2), dips under it into the sea. It has a broad summit, with obscure traces of a crateriform structure, and is composed of basaltic rocks (Of these, one common variety is remarkable for being full of small fragments of a dark jasper-red earthy mineral, which, when examined carefully, shows an indistinct cleavage; the little fragments are elongated in form, are soft, are magnetic before and after being heated, and fuse with difficulty into a dull enamel. This mineral is evidently closely related to the oxides of iron, but I cannot ascertain what it exactly is. The rock containing this mineral is crenulated with small angular cavities, which are lined and filled with yellowish crystals of carbonate of lime.), some compact, others highly cellular with inclined beds of loose scoriae, of which some are associated with earthy lime. Like Red Hill, it has been the source of eruptions, subsequently to the elevation of the surrounding basaltic plain; but unlike that hill, it has undergone considerable denudation, and has been the seat of volcanic action at a remote period, when beneath the sea. I judge of this latter circumstance from finding on its inland flank the last remains of three small points of eruption. These points are composed of glossy scoriae, cemented by crystalline calcareous spar, exactly like the great submarine calcareous deposit, where the heated lava has rolled over it: their demolished state can, I think, be explained only by the denuding action of the waves of the sea. I was guided to the first orifice by observing a sheet of lava, about two hundred yards square, with steepish sides, superimposed on the basaltic plain with no adjoining hillock, whence it could have been erupted; and the only trace of a crater which I was able to discover, consisted of some inclined beds of scoriae at one of its corners. At the distance of fifty yards from a second level-topped patch of lava, but of much smaller size, I found an irregular circular group of masses of cemented, scoriaceous breccia, about six feet in height, which doubtless had once formed the point of eruption. The third orifice is now marked only by an irregular circle of cemented scoriae, about four yards in diameter, and rising in its highest point scarcely three feet above the level of the plain, the surface of which, close all round, exhibits its usual appearance: here we have a horizontal basal section of a volcanic spiracle, which, together with all its ejected matter, has been almost totally obliterated.
The stream of lava, which fills the narrow gorge eastward of the town of Praya, judging from its course, seems, as before remarked, to have come from Signal Post Hill, and to have flowed over the plain, after its elevation (The sides of this gorge, where the upper basaltic stratum is intersected, are almost perpendicular. The lava, which has since filled it up, is attached to these sides, almost as firmly as a dike is to its walls. In most cases, where a stream of lava has flowed down a valley, it is bounded on each side by loose scoriaceous masses.): the same observation applies to a stream (possibly part of the same one) capping the sea cliffs, a little eastward of the gorge. When I endeavoured to follow these streams over the stony level plain, which is almost destitute of soil and vegetation, I was much surprised to find, that although composed of hard basaltic matter, and not having been exposed to marine denudation, all distant traces of them soon became utterly lost. But I have since observed at the Galapagos Archipelago, that it is often impossible to follow even great deluges of quite recent lava across older streams, except by the size of the bushes growing on them, or by the comparative states of glossiness of their surfaces, – characters which a short lapse of time would be sufficient quite to obscure. I may remark, that in a level country, with a dry climate, and with the wind blowing always in one direction (as at the Cape de Verde Archipelago), the effects of atmospheric degradation are probably much greater than would at first be expected; for soil in this case accumulates only in a few protected hollows, and being blown in one direction, it is always travelling towards the sea in the form of the finest dust, leaving the surface of the rocks bare, and exposed to the full effects of renewed meteoric action.
INLAND HILLS OF MORE ANCIENT VOLCANIC ROCKS.
These hills are laid down by eye, and marked as A, B, C, etc., in Map 1. They are related in mineralogical composition, and are probably directly continuous with the lowest rocks exposed on the coast. These hills, viewed from a distance, appear as if they had once formed part of an irregular tableland, and from their corresponding structure and composition this probably has been the case. They have flat, slightly inclined summits, and are, on an average, about six hundred feet in height; they present their steepest slope towards the interior of the island, from which point they radiate outwards, and are separated from each other by broad and deep valleys, through which the great streams of lava, forming the coast-plains, have descended. Their inner and steeper escarpments are ranged in an irregular curve, which rudely follows the line of the shore, two or three miles inland from it. I ascended a few of these hills, and from others, which I was able to examine with a telescope, I obtained specimens, through the kindness of Mr. Kent, the assistant-surgeon of the "Beagle"; although by these means I am acquainted with only a part of the range, five or six miles in length, yet I scarcely hesitate, from their uniform structure, to affirm that they are parts of one great formation, stretching round much of the circumference of the island.
The upper and lower strata of these hills differ greatly in composition. The upper are basaltic, generally compact, but sometimes scoriaceous and amygdaloidal, with associated masses of wacke: where the basalt is compact, it is either fine-grained or very coarsely crystallised; in the latter case it passes into an augitic rock, containing much olivine; the olivine is either colourless, or of the usual yellow and dull reddish shades. On some of the hills, beds of calcareous matter, both in an earthy and in a crystalline form, including fragments of glossy scoriae, are associated with the basaltic strata. These strata differ from the streams of basaltic lava forming the coast-plains, only in being more compact, and in the crystals of augite, and in the grains of olivine being of much greater size; – characters which, together with the appearance of the associated calcareous beds, induce me to believe that they are of submarine formation.
Some considerable masses of wacke, which are associated with these basaltic strata, and which likewise occur in the basal series on the coast, especially at Quail Island, are curious. They consist of a pale yellowish- green argillaceous substance, of a crumbling texture when dry, but unctuous when moist: in its purest form, it is of a beautiful green tint, with translucent edges, and occasionally with obscure traces of an original cleavage. Under the blowpipe it fuses very readily into a dark grey, and sometimes even black bead, which is slightly magnetic. From these characters, I naturally thought that it was one of the pale species, decomposed, of the genus augite; – a conclusion supported by the unaltered rock being full of large separate crystals of black augite, and of balls and irregular streaks of dark grey augitic rock. As the basalt ordinarily consists of augite, and of olivine often tarnished and of a dull red colour, I was led to examine the stages of decomposition of this latter mineral, and I found, to my surprise, that I could trace a nearly perfect gradation from unaltered olivine to the green wacke. Part of the same grain under the blowpipe would in some instances behave like olivine, its colour being only slightly changed, and part would give a black magnetic bead. Hence I can have no doubt that the greenish wacke originally existed as olivine; but great chemical changes must have been effected during the act of decomposition thus to have altered a very hard, transparent, infusible mineral, into a soft, unctuous, easily melted, argillaceous substance. (D'Aubuisson "Traite de Geognosie" tome 2 page 569 mentions, on the authority of M. Marcel de Serres, masses of green earth near Montpellier, which are supposed to be due to the decomposition of olivine. I do not, however, find, that the action of this mineral under the blowpipe being entirely altered, as it becomes decomposed, has been noticed; and the knowledge of this fact is important, as at first it appears highly improbable that a hard, transparent, refractory mineral should be changed into a soft, easily fused clay, like this of St. Jago. I shall hereafter describe a green substance, forming threads within the cells of some vesicular basaltic rocks in Van Diemen's Land, which behave under the blowpipe like the green wacke of St. Jago; but its occurrence in cylindrical threads, shows it cannot have resulted from the decomposition of olivine, a mineral always existing in the form of grains or crystals.)
The basal strata of these hills, as well as some neighbouring, separate, bare, rounded hillocks, consist of compact, fine-grained, non-crystalline (or so slightly as scarcely to be perceptible), ferruginous, feldspathic rocks, and generally in a state of semi-decomposition. Their fracture is exceedingly irregular, and splintery; yet small fragments are often very tough. They contain much ferruginous matter, either in the form of minute grains with a metallic lustre, or of brown hair-like threads: the rock in this latter case assuming a pseudo-brecciated structure. These rocks sometimes contain mica and veins of agate. Their rusty brown or yellowish colour is partly due to the oxides of iron, but chiefly to innumerable, microscopically minute, black specks, which, when a fragment is heated, are easily fused, and evidently are either hornblende or augite. These rocks, therefore, although at first appearing like baked clay or some altered sedimentary deposit, contain all the essential ingredients of trachyte; from which they differ only in not being harsh, and in not containing crystals of glassy feldspar. As is so often the case with trachytic formation, no stratification is here apparent. A person would not readily believe that these rocks could have flowed as lava; yet at St. Helena there are well-characterised streams (as will be described in an ensuing chapter) of nearly similar composition. Amidst the hillocks composed of these rocks, I found in three places, smooth conical hills of phonolite, abounding with fine crystals of glassy feldspar, and with needles of hornblende. These cones of phonolite, I believe, bear the same relation to the surrounding feldspathic strata which some masses of coarsely crystallised augitic rock, in another part of the island, bear to the surrounding basalt, namely, that both have been injected. The rocks of a feldspathic nature being anterior in origin to the basaltic strata, which cap them, as well as to the basaltic streams of the coast-plains, accords with the usual order of succession of these two grand divisions of the volcanic series.
The strata of most of these hills in the upper part, where alone the planes of division are distinguishable, are inclined at a small angle from the interior of the island towards the sea-coast. The inclination is not the same in each hill; in that marked A it is less than in B, D, or E; in C the strata are scarcely deflected from a horizontal plane, and in F (as far as I could judge without ascending it) they are slightly inclined in a reverse direction, that is, inwards and towards the centre of the island. Notwithstanding these differences of inclination, their correspondence in external form, and in the composition both of their upper and lower parts, – their relative position in one curved line, with their steepest sides turned inwards, – all seem to show that they originally formed parts of one platform; which platform, as before remarked, probably extended round a considerable portion of the circumference of the island. The upper strata certainly flowed as lava, and probably beneath the sea, as perhaps did the lower feldspathic masses: how then come these strata to hold their present position, and whence were they erupted?
In the centre of the island there are lofty mountains, but they are separated from the steep inland flanks of these hills by a wide space of lower country: the interior mountains, moreover, seem to have been the source of those great streams of basaltic lava which, contracting as they pass between the bases of the hills in question, expand into the coast- plains. (I saw very little of the inland parts of the island. Near the village of St. Domingo, there are magnificent cliffs of rather coarsely crystallised basaltic lava. Following the little stream in this valley, about a mile above the village, the base of the great cliff was formed of a compact fine-grained basalt, conformably covered by a bed of pebbles. Near Fuentes, I met with pap-formed hills of the compact feldspathic series of rocks.) Round the shores of St. Helena there is a rudely formed ring of basaltic rocks, and at Mauritius there are remnants of another such a ring round part, if not round the whole, of the island; here again the same question immediately occurs, how came these masses to hold their present position, and whence were they erupted? The same answer, whatever it may be, probably applies in these three cases; and in a future chapter we shall recur to this subject.
VALLEYS NEAR THE COAST.
These are broad, very flat, and generally bounded by low cliff-formed sides. Portions of the basaltic plain are sometimes nearly or quite isolated by them; of which fact, the space on which the town of Praya stands offers an instance. The great valley west of the town has its bottom filled up to a depth of more than twenty feet by well-rounded pebbles, which in some parts are firmly cemented together by white calcareous matter. There can be no doubt, from the form of these valleys, that they were scooped out by the waves of the sea, during that equable elevation of the land, of which the horizontal calcareous deposit, with its existing species of marine remains, gives evidence. Considering how well shells have been preserved in this stratum, it is singular that I could not find even a single small fragment of shell in the conglomerate at the bottom of the valleys. The bed of pebbles in the valley west of the town is intersected by a second valley joining it as a tributary, but even this valley appears much too wide and flat-bottomed to have been formed by the small quantity of water, which falls only during one short wet season; for at other times of the year these valleys are absolutely dry.
RECENT CONGLOMERATE.
On the shores of Quail Island, I found fragments of brick, bolts of iron, pebbles, and large fragments of basalt, united by a scanty base of impure calcareous matter into a firm conglomerate. To show how exceedingly firm this recent conglomerate is, I may mention, that I endeavoured with a heavy geological hammer to knock out a thick bolt of iron, which was embedded a little above low-water mark, but was quite unable to succeed.
CHAPTER II. – FERNANDO NORONHA; TERCEIRA; TAHITI, ETC
FERNANDO NORONHA.
Precipitous hill of phonolite.
TERCEIRA.
Trachytic rocks: their singular decomposition by steam of high temperature.
TAHITI. Passage from wacke into trap; singular volcanic rock with the vesicles half-filled with mesotype.
MAURITIUS.
Proofs of its recent elevation.
Structure of its more ancient mountains; similarity with St. Jago.
ST. PAUL'S ROCKS.
Not of volcanic origin.
Their singular mineralogical composition.
FERNANDO NORONHA.
During our short visit at this and the four following islands, I observed very little worthy of description. Fernando Noronha is situated in the Atlantic Ocean, in latitude 3 degrees 50 minutes S., and 230 miles distant from the coast of South America. It consists of several islets, together nine miles in length by three in breadth. The whole seems to be of volcanic origin; although there is no appearance of any crater, or of any one central eminence. The most remarkable feature is a hill 1,000 feet high, of which the upper 400 feet consist of a precipitous, singularly shaped pinnacle, formed of columnar phonolite, containing numerous crystals of glassy feldspar, and a few needles of hornblende. From the highest accessible point of this hill, I could distinguish in different parts of the group several other conical hills, apparently of the same nature. At St. Helena there are similar, great, conical, protuberant masses of phonolite, nearly one thousand feet in height, which have been formed by the injection of fluid feldspathic lava into yielding strata. If this hill has had, as is probable, a similar origin, denudation has been here effected on an enormous scale. Near the base of this hill, I observed beds of white tuff, intersected by numerous dikes, some of amygdaloidal basalt and others of trachyte; and beds of slaty phonolite with the planes of cleavage directed N.W. and S.E. Parts of this rock, where the crystals were scanty, closely resembled common clay-slate, altered by the contact of a trap-dike. The lamination of rocks, which undoubtedly have once been fluid, appears to me a subject well deserving attention. On the beach there were numerous fragments of compact basalt, of which rock a distant facade of columns seemed to be formed.
TERCEIRA IN THE AZORES.
The central parts of this island consist of irregularly rounded mountains of no great elevation, composed of trachyte, which closely resembles in general character the trachyte of Ascension, presently to be described. This formation is in many parts overlaid, in the usual order of superposition, by streams of basaltic lava, which near the coast compose nearly the whole surface. The course which these streams have followed from their craters, can often be followed by the eye. The town of Angra is overlooked by a crateriform hill (Mount Brazil), entirely built of thin strata of fine-grained, harsh, brown-coloured tuff. The upper beds are seen to overlap the basaltic streams on which the town stands. This hill is almost identical in structure and composition with numerous crateriformed hills in the Galapagos Archipelago.
EFFECTS OF STEAM ON THE TRACHYTIC ROCKS.