Оценить:
 Рейтинг: 0

More Letters of Charles Darwin — Volume 2

Год написания книги
2017
<< 1 ... 8 9 10 11 12 13 14 15 16 ... 38 >>
На страницу:
12 из 38
Настройки чтения
Размер шрифта
Высота строк
Поля

Pray give my best thanks to Lady Lyell for her translation, which was as clear as daylight to me, including "leglessness."

LETTER 486. TO C. LYELL.

Down {November 20th, 1849}.

I remembered the passage in E. de B. {Elie de Beaumont} and have now re-read it. I have always and do still entirely disbelieve it; in such a wonderful case he ought to have hammered every inch of rock up to actual junction; he describes no details of junction, and if I were in your place I would absolutely dispute the fact of junction (or articulation as he oddly calls it) on such evidence. I go farther than you; I do not believe in the world there is or has been a junction between a dike and stream of lava of exact shape of either (1) or (2) Figure 2}.

(Figures 2, 3 and 4.)

If dike gave immediate origin to volcanic vent we should have craters of {an} elliptic shape {Figure 3}. I believe that when the molten rock in a dike comes near to the surface, some one two or three points will always certainly chance to afford an easier passage upward to the actual surface than along the whole line, and therefore that the dike will be connected (if the whole were bared and dissected) with the vent by a column or cone (see my elegant drawing) of lava {Figure 4}. I do not doubt that the dikes are thus indirectly connected with eruptive vents. E. de B. seems to have observed many of his T; now without he supposes the whole line of fissure or dike to have poured out lava (which implies, as above remarked, craters of an elliptic or almost linear shape) on both sides, how extraordinarily improbable it is, that there should have been in a single line of section so many intersections of points eruption; he must, I think, make his orifices of eruption almost linear or, if not so, astonishingly numerous. One must refer to what one has seen oneself: do pray, when you go home, look at the section of a minute cone of eruption at the Galapagos, page 109 (486/1. "Geological Observations on Volcanic Islands." London, 1890, page 238.), which is the most perfect natural dissection of a crater which I have ever heard of, and the drawing of which you may, I assure you, trust; here the arching over of the streams as they were poured out over the lip of the crater was evident, and are now thus seen united to the central irregular column. Again, at St. Jago I saw some horizontal sections of the bases of small craters, and the sources or feeders were circular. I really cannot entertain a doubt that E. de B. is grossly wrong, and that you are right in your view; but without most distinct evidence I will never admit that a dike joins on rectangularly to a stream of lava. Your argument about the perpendicularity of the dike strikes me as good.

The map of Etna, which I have been just looking at, looks like a sudden falling in, does it not? I am not much surprised at the linear vent in Santorin (this linear tendency ought to be difficult to a circular-crater-of-elevation-believer), I think Abich (486/2. "Geologische Beobachtungen uber die vulkanischen Erscheinungen und Bildungen in Unter- und Mittel-Italien." Braunschweig, 1841.) describes having seen the same actual thing forming within the crater of Vesuvius. In such cases what outline do you give to the upper surface of the lava in the dike connecting them? Surely it would be very irregular and would send up irregular cones or columns as in my above splendid drawing.

At the Royal on Friday, after more doubt and misgiving than I almost ever felt, I voted to recommend Forbes for Royal Medal, and that view was carried, Sedgwick taking the lead.

I am glad to hear that all your party are pretty well. I know from experience what you must have gone through. From old age with suffering death must be to all a happy release. (486/3. This seems to refer to the death of Sir Charles Lyell's father, which occurred on November 8th, 1849.)

I saw Dan Sharpe the other day, and he told me he had been working at the mica schist (i.e. not gneiss) in Scotland, and that he was quite convinced my view was right. You are wrong and a heretic on this point, I know well.

LETTER 487. TO C.H.L. WOODD. Down, March 4th {1850}.

(487/1. The paper was sent in MS., and seems not to have been published. Mr. Woodd was connected by marriage with Mr. Darwin's cousin, the late Rev. W. Darwin Fox. It was perhaps in consequence of this that Mr. Darwin proposed Mr. Woodd for the Geological Society.)

I have read over your paper with attention; but first let me thank you for your very kind expressions towards myself. I really feel hardly competent to discuss the questions raised by your paper; I feel the want of mathematical mechanics. All such problems strike me as awfully complicated; we do not even know what effect great pressure has on retarding liquefaction by heat, nor, I apprehend, on expansion. The chief objection which strikes me is a doubt whether a mass of strata, when heated, and therefore in some slight degree at least softened, would bow outwards like a bar of metal. Consider of how many subordinate layers each great mass would be composed, and the mineralogical changes in any length of any one stratum: I should have thought that the strata would in every case have crumpled up, and we know how commonly in metamorphic strata, which have undergone heat, the subordinate layers are wavy and sinuous, which has always been attributed to their expansion whilst heated.

Before rocks are dried and quarried, manifold facts show how extremely flexible they are even when not at all heated. Without the bowing out and subsequent filling in of the roof of the cavity, if I understand you, there would be no subsidence. Of course the crumpling up of the strata would thicken them, and I see with you that this might compress the underlying fluidified rock, which in its turn might escape by a volcano or raise a weaker part of the earth's crust; but I am too ignorant to have any opinion whether force would be easily propagated through a viscid mass like molten rock; or whether such viscid mass would not act in some degree like sand and refuse to transmit pressure, as in the old experiment of trying to burst a piece of paper tied over the end of a tube with a stick, an inch or two of sand being only interposed. I have always myself felt the greatest difficulty in believing in waves of heat coming first to this and then to that quarter of the world: I suspect that heat plays quite a subordinate part in the upward and downward movements of the earth's crust; though of course it must swell the strata where first affected. I can understand Sir J. Herschel's manner of bringing heat to unheated strata — namely, by covering them up by a mile or so of new strata, and then the heat would travel into the lower ones. But who can tell what effect this mile or two of new sedimentary strata would have from mere gravity on the level of the supporting surface? Of course such considerations do not render less true that the expansion of the strata by heat would have some effect on the level of the surface; but they show us how awfully complicated the phenomenon is. All young geologists have a great turn for speculation; I have burned my fingers pretty sharply in that way, and am now perhaps become over-cautious; and feel inclined to cavil at speculation when the direct and immediate effect of a cause in question cannot be shown. How neatly you draw your diagrams; I wish you would turn your attention to real sections of the earth's crust, and then speculate to your heart's content on them; I can have no doubt that speculative men, with a curb on, make far the best observers. I sincerely wish I could have made any remarks of more interest to you, and more directly bearing on your paper; but the subject strikes me as too difficult and complicated. With every good wish that you may go on with your geological studies, speculations, and especially observations...

LETTER 488. TO C. LYELL. Down, March 24th {1853}.

I have often puzzled over Dana's case, in itself and in relation to the trains of S. American volcanoes of different heights in action at the same time (page 605, Volume V. "Geological Transactions." (488/1. "On the Connection of certain Volcanic Phenomena in South America, and on the Formation of Mountain Chains and Volcanoes, as the Effect of the same Power by which Continents are Elevated" ("Trans. Geol. Soc." Volume V., page 601, 1840). On page 605 Darwin records instances of the simultaneous activity after an earthquake of several volcanoes in the Cordillera.)) I can throw no light on the subject. I presume you remember that Hopkins (488/2. See "Report on the Geological Theories of Elevation and Earthquakes," by W. Hopkins, "Brit. Assoc. Rep." 1847, page 34.) in some one (I forget which) of his papers discusses such cases, and urgently wishes the height of the fluid lava was known in adjoining volcanoes when in contemporaneous action; he argues vehemently against (as far as I remember) volcanoes in action of different heights being connected with one common source of liquefied rock. If lava was as fluid as water, the case would indeed be hopeless; and I fancy we should be led to look at the deep-seated rock as solid though intensely hot, and becoming fluid as soon as a crack lessened the tension of the super-incumbent strata. But don't you think that viscid lava might be very slow in communicating its pressure equally in all directions? I remember thinking strongly that Dana's case within the one crater of Kilauea proved too much; it really seems monstrous to suppose that the lava within the same crater is not connected at no very great depth.

When one reflects on (and still better sees) the enormous masses of lava apparently shot miles high up, like cannon-balls, the force seems out of all proportion to the mere gravity of the liquefied lava; I should think that a channel a little straightly or more open would determine the line of explosion, like the mouth of a cannon compared to the touch-hole. If a high-pressure boiler was cracked across, no one would think for a moment that the quantity of water and steam expelled at different points depended on the less or greater height of the water within the boiler above these points, but on the size of the crack at these points; and steam and water might be driven out both at top and bottom. May not a volcano be likened to a protruding and cracked portion on a vast natural high-pressure boiler, formed by the surrounding area of country? In fact, I think my simile would be truer if the difference consisted only in the cracked case of the boiler being much thicker in some parts than in others, and therefore having to expel a greater thickness or depth of water in the thicker cracks or parts — a difference of course absolutely as nothing.

I have seen an old boiler in action, with steam and drops of water spurting out of some of the rivet-holes. No one would think whether the rivet-holes passed through a greater or less thickness of iron, or were connected with the water higher or lower within the boiler, so small would the gravity be compared with the force of the steam. If the boiler had been not heated, then of course there would be a great difference whether the rivet-holes entered the water high or low, so that there was greater or less pressure of gravity. How to close my volcanic rivet-holes I don't know.

I do not know whether you will understand what I am driving at, and it will not signify much whether you do or not. I remember in old days (I may mention the subject as we are on it) often wishing I could get you to look at continental elevations as THE phenomenon, and volcanic outbursts and tilting up of mountain chains as connected, but quite secondary, phenomena. I became deeply impressed with the truth of this view in S. America, and I do not think you hold it, or if so make it clear: the same explanation, whatever it may be, which will account for the whole coast of Chili rising, will and must apply to the volcanic action of the Cordillera, though modified no doubt by the liquefied rock coming to the surface and reaching water, and so {being} rendered explosive. To me it appears that this ought to be borne in mind in your present subject of discussion. I have written at too great length; and have amused myself if I have done you no good — so farewell.

LETTER 489. TO C. LYELL. Down, July 5th {1856}.

I am very much obliged for your long letter, which has interested me much; but before coming to the volcanic cosmogony I must say that I cannot gather your verdict as judge and jury (and not as advocate) on the continental extensions of late authors (489/1. See "Life and Letters," II., page 74; Letter to Lyell, June 25th, 1856: also letters in the sections of the present work devoted to Evolution and Geographical Distribution.), which I must grapple with, and which as yet strikes me as quite unphilosophical, inasmuch as such extensions must be applied to every oceanic island, if to any one, as to Madeira; and this I cannot admit, seeing that the skeletons, at least, of our continents are ancient, and seeing the geological nature of the oceanic islands themselves. Do aid me with your judgment: if I could honestly admit these great {extensions}, they would do me good service.

With respect to active volcanic areas being rising areas, which looks so pretty on the coral maps, I have formerly felt "uncomfortable" on exactly the same grounds with you, viz. maritime position of volcanoes; and still more from the immense thicknesses of Silurian, etc., volcanic strata, which thicknesses at first impress the mind with the idea of subsidence. If this could be proved, the theory would be smashed; but in deep oceans, though the bottom were rising, great thicknesses of submarine lava might accumulate. But I found, after writing Coral Book, cases in my notes of submarine vesicular lava-streams in the upper masses of the Cordillera, formed, as I believe, during subsidence, which staggered me greatly. With respect to the maritime position of volcanoes, I have long been coming to the conclusion that there must be some law causing areas of elevation (consequently of land) and of subsidence to be parallel (as if balancing each other) and closely approximate; I think this from the form of continents with a deep ocean on one side, from coral map, and especially from conversations with you on immense subsidences of the Carboniferous and {other} periods, and yet with continued great supply of sediment. If this be so, such areas, with opposite movements, would probably be separated by sets of parallel cracks, and would be the seat of volcanoes and tilts, and consequently volcanoes and mountains would be apt to be maritime; but why volcanoes should cling to the rising edge of the cracks I cannot conjecture. That areas with extinct volcanic archipelagoes may subside to any extent I do not doubt.

Your view of the bottom of Atlantic long sinking with continued volcanic outbursts and local elevations at Madeira, Canaries, etc., grates (but of course I do not know how complex the phenomena are which are thus explained) against my judgment; my general ideas strongly lead me to believe in elevatory movements being widely extended. One ought, I think, never to forget that when a volcano is in action we have distinct proof of an action from within outwards. Nor should we forget, as I believe follows from Hopkins (489/2. "Researches in Physical Geology," W. Hopkins, "Trans. Phil. Soc. Cambridge," Volume VI., 1838. See also "Report on the Geological Theories of Elevation and Earthquakes," W. Hopkins, "Brit. Assoc. Rep." page 33, 1847 (Oxford meeting).), and as I have insisted in my Earthquake paper, that volcanoes and mountain chains are mere accidents resulting from the elevation of an area, and as mountain chains are generally long, so should I view areas of elevation as generally large. (489/3. "On the Connexion of certain Volcanic Phenomena in S. America, and on the Formation of Mountain Chains and Volcanoes, as the Effect of the same Power by which Continents are Elevated," "Trans. Geol. Soc." Volume V., page 601, 1840. "Bearing in mind Mr. Hopkins' demonstration, if there be considerable elevation there must be fissures, and, if fissures, almost certainly unequal upheaval, or subsequent sinking down, the argument may be finally thus put: mountain chains are the effects of continental elevations; continental elevations and the eruptive force of volcanoes are due to one great motive, now in progressive action..." (loc. cit., page 629).)

Your old original view that great oceans must be sinking areas, from there being causes making land and yet there being little land, has always struck me till lately as very good. But in some degree this starts from the assumption that within periods of which we know anything there was either a continent in such areas, or at least a sea-bottom of not extreme depth.

LETTER 490. TO C. LYELL. King's Head Hotel, Sandown, Isle of Wight, July 18th {1858}.

I write merely to thank you for the abstract of the Etna paper. (490/1. "On the Structure of Lavas which have Consolidated on Steep Slopes, with Remarks on the Mode of Origin of Mount Etna and on the Theory of 'Craters of Elevation,'" by C. Lyell, "Phil. Trans. R. Soc." Volume CXLVIII., page 703, 1859.) It seems to me a very grand contribution to our volcanic knowledge. Certainly I never expected to see E. de B.'s {Elie de Beaumont} theory of slopes so completely upset. He must have picked out favourable cases for measurement. And such an array of facts he gives! You have scotched, and will see die, I now think, the Crater of Elevation theory. But what vitality there is in a plausible theory! (490/2. The rest of this letter is published in "Life and Letters," II., page 129.)

LETTER 491. TO C. LYELL. Down, November 25th {1860}.

I have endeavoured to think over your discussion, but not with much success. You will have to lay down, I think, very clearly, what foundation you argue from — four parts (which seems to me exceedingly moderate on your part) of Europe being now at rest, with one part undergoing movement. How it is, that from this you can argue that the one part which is now moving will have rested since the commencement of the Glacial period in the proportion of four to one, I do not pretend to see with any clearness; but does not your argument rest on the assumption that within a given period, say two or three million years, the whole of Europe necessarily has to undergo movement? This may be probable or not so, but it seems to me that you must explain the foundation of your argument from space to time, which at first, to me was very far from obvious. I can, of course, see that if you can make out your argument satisfactorily to yourself and others it would be most valuable. I can imagine some one saying that it is not fair to argue that the great plains of Europe and the mountainous districts of Scotland and Wales have been at all subjected to the same laws of movement. Looking to the whole world, it has been my opinion, from the very size of the continents and oceans, and especially from the enormous ranges of so many mountain-chains (resulting from cracks which follow from vast areas of elevation, as Hopkins argues (491/1. See "Report on the Geological Theories of Elevation and Earthquakes." by William Hopkins. "Brit. Assoc. Rep." 1847, pages 33-92; also the Anniversary Address to the Geological Society by W. Hopkins in 1852 ("Quart. Journ. Geol. Soc." Volume VIII.); in this Address, pages lxviii et seq.) reference is made to the theory of elevation which rests on the supposition "of the simultaneous action of an upheaving force at every point of the area over which the phenomena of elevation preserve a certain character of continuity...The elevated mass...becomes stretched, and is ultimately torn and fissured in those directions in which the tendency thus to tear is greatest...It is thus that the complex phenomena of elevation become referable to a general and simple mechanical cause...")) and from other reasons, it has been my opinion that, as a general rule, very large portions of the world have been simultaneously affected by elevation or subsidence. I can see that this does not apply so strongly to broken Europe, any more than to the Malay Archipelago. Yet, had I been asked, I should have said that probably nearly the whole of Europe was subjected during the Glacial period to periods of elevation and of subsidence. It does not seem to me so certain that the kinds of partial movement which we now see going on show us the kind of movement which Europe has been subjected to since the commencement of the Glacial period. These notions are at least possible, and would they not vitiate your argument? Do you not rest on the belief that, as Scandinavia and some few other parts are now rising, and a few others sinking, and the remainder at rest, so it has been since the commencement of the Glacial period? With my notions I should require this to be made pretty probable before I could put much confidence in your calculations. You have probably thought this all over, but I give you the reflections which come across me, supposing for the moment that you took the proportions of space at rest and in movement as plainly applicable to time. I have no doubt that you have sufficient evidence that, at the commencement of the Glacial period, the land in Scotland, Wales, etc., stood as high or higher than at present, but I forget the proofs.

Having burnt my own fingers so consumedly with the Wealden, I am fearful for you, but I well know how infinitely more cautious, prudent, and far-seeing you are than I am; but for heaven's sake take care of your fingers; to burn them severely, as I have done, is very unpleasant.

Your 2 1/2 feet for a century of elevation seems a very handsome allowance. can D. Forbes really show the great elevation of Chili? I am astounded at it, and I took some pains on the point.

I do not pretend to say that you may not be right to judge of the past movements of Europe by those now and recently going on, yet it somehow grates against my judgment, — perhaps only against my prejudices.

As a change from elevation to subsidence implies some great subterranean or cosmical change, one may surely calculate on long intervals of rest between. Though, if the cause of the change be ever proved to be astronomical, even this might be doubtful.

P.S. — I do not know whether I have made clear what I think probable, or at least possible: viz., that the greater part of Europe has at times been elevated in some degree equably; at other times it has all subsided equably; and at other times might all have been stationary; and at other times it has been subjected to various unequal movements, up and down, as at present.

LETTER 492. TO C. LYELL. Down, December 4th {1860}.

It certainly seems to me safer to rely solely on the slowness of ascertained up-and-down movement. But you could argue length of probable time before the movement became reversed, as in your letter. And might you not add that over the whole world it would probably be admitted that a larger area is NOW at rest than in movement? and this I think would be a tolerably good reason for supposing long intervals of rest. You might even adduce Europe, only guarding yourself by saying that possibly (I will not say probably, though my prejudices would lead me to say so) Europe may at times have gone up and down all together. I forget whether in a former letter you made a strong point of upward movement being always interrupted by long periods of rest. After writing to you, out of curiosity I glanced at the early chapters in my "Geology of South America," and the areas of elevation on the E. and W. coasts are so vast, and proofs of many successive periods of rest so striking, that the evidence becomes to my mind striking. With regard to the astronomical causes of change: in ancient days in the "Beagle" when I reflected on the repeated great oscillations of level on the very same area, and when I looked at the symmetry of mountain chains over such vast spaces, I used to conclude that the day would come when the slow change of form in the semi-fluid matter beneath the crust would be found to be the cause of volcanic action, and of all changes of level. And the late discussion in the "Athenaeum" (492/1. "On the Change of Climate in Different Regions of the Earth." Letters from Sir Henry James, Col. R.E., "Athenaeum," August 25th, 1860, page 256; September 15th, page 355; September 29th, page 415; October 13th, page 483. Also letter from J. Beete Jukes, Local Director of the Geological Survey of Ireland, loc. cit., September 8th, page 322; October 6th, page 451.), by Sir H. James (though his letter seemed to me mighty poor, and what Jukes wrote good), reminded me of this notion. In case astronomical agencies should ever be proved or rendered probable, I imagine, as in nutation or precession, that an upward movement or protrusion of fluidified matter below might be immediately followed by movement of an opposite nature. This is all that I meant.

I have not read Jamieson, or yet got the number. (492/2. Possibly William Jameson, "Journey from Quito to Cayambe," "Geog. Soc. Journ." Volume XXXI., page 184, 1861.) I was very much struck with Forbes' explanation of n{itrate} of soda beds and the saliferous crust, which I saw and examined at Iquique. (492/3. "On the Geology of Bolivia and Southern Peru," by D. Forbes, "Quart. Journ. Geol. Soc." Volume XVII., page 7, 1861. Mr. Forbes attributes the formation of the saline deposits to lagoons of salt water, the communication of which with the sea has been cut off by the rising of the land (loc. cit., page 13).) I often speculated on the greater rise inland of the Cordilleras, and could never satisfy myself...

I have not read Stur, and am awfully behindhand in many things...(492/4. The end of this letter is published as a footnote in "Life and Letters," II., page 352.)

(FIGURE 5. Map of part of South America and the Galapagos Archipelago.)

LETTER 493. TO C. LYELL. Down, July 18th {1867}.

(493/1. The first part of this letter is published in "Life and Letters," III., page 71.)

(493/2. Tahiti (Society Islands) is coloured blue in the map showing the distribution of the different kinds of reefs in "The Structure and Distribution of Coral Reefs," Edition III., 1889, page 185. The blue colour indicates the existence of barrier reefs and atolls which, on Darwin's theory, point to subsidence.)

Tahiti is, I believe, rightly coloured, for the reefs are so far from the land, and the ocean so deep, that there must have been subsidence, though not very recently. I looked carefully, and there is no evidence of recent elevation. I quite agree with you versus Herschel on Volcanic Islands. (493/3. Sir John Herschel suggested that the accumulation on the sea-floor of sediment, derived from the waste of the island, presses down the bed of the ocean, the continent being on the other hand relieved of pressure; "this brings about a state of strain in the crust which will crack in its weakest spot, the heavy side going down, and the light side rising." In discussing this view Lyell writes ("Principles," Volume II. Edition X., page 229), "This hypothesis appears to me of very partial application, for active volcanoes, even such as are on the borders of continents, are rarely situated where great deltas have been forming, whether in Pliocene or post-Tertiary times. The number, also, of active volcanoes in oceanic islands is very great, not only in the Pacific, but equally in the Atlantic, where no load of coral matter...can cause a partial weighting and pressing down of a supposed flexible crust.") Would not the Atlantic and Antarctic volcanoes be the best examples for you, as there then can be no coral mud to depress the bottom? In my "Volcanic Islands," page 126, I just suggest that volcanoes may occur so frequently in the oceanic areas as the surface would be most likely to crack when first being elevated. I find one remark, page 128 (493/4. "Volcanic Islands," page 128: "The islands, moreover, of some of the small volcanic groups, which thus border continents, are placed in lines related to those along which the adjoining shores of the continents trend" {see Figure 5}.), which seems to me worth consideration — viz. the parallelism of the lines of eruption in volcanic archipelagoes with the coast lines of the nearest continent, for this seems to indicate a mechanical rather than a chemical connection in both cases, i.e. the lines of disturbance and cracking. In my "South American Geology," page 185 (493/5. "Geological Observations on South America," London, 1846, page 185.), I allude to the remarkable absence at present of active volcanoes on the east side of the Cordillera in relation to the absence of the sea on this side. Yet I must own I have long felt a little sceptical on the proximity of water being the exciting cause. The one volcano in the interior of Asia is said, I think, to be near great lakes; but if lakes are so important, why are there not many other volcanoes within other continents? I have always felt rather inclined to look at the position of volcanoes on the borders of continents, as resulting from coast lines being the lines of separation between areas of elevation and subsidence. But it is useless in me troubling you with my old speculations.

LETTER 494. TO A.R. WALLACE. March 22nd {1869}.

(494/1. The following extract from a letter to Mr. Wallace refers to his "Malay Archipelago," 1869.)

I have only one criticism of a general nature, and I am not sure that other geologists would agree with me. You repeatedly speak as if the pouring out of lava, etc., from volcanoes actually caused the subsidence of an adjoining area. I quite agree that areas undergoing opposite movements are somehow connected; but volcanic outbursts must, I think, be looked at as mere accidents in the swelling up of a great dome or surface of plutonic rocks, and there seems no more reason to conclude that such swelling or elevation in mass is the cause of the subsidence, than that the subsidence is the cause of the elevation, which latter view is indeed held by some geologists. I have regretted to find so little about the habits of the many animals which you have seen.

LETTER 495. TO C. LYELL. Down, May 20th, 1869.

I have been much pleased to hear that you have been looking at my S. American book (495/1. "Geological Observations on South America," London, 1846.), which I thought was as completely dead and gone as any pre-Cambrian fossil. You are right in supposing that my memory about American geology has grown very hazy. I remember, however, a paper on the Cordillera by D. Forbes (495/2. "Geology of Bolivia and South Peru," by Forbes, "Quart. Journ. Geol. Soc." Volume XVII., pages 7-62, 1861. Forbes admits that there is "the fullest evidence of elevation of the Chile coast since the arrival of the Spaniards. North of Arica, if we accept the evidence of M. d'Orbigny and others, the proof of elevation is much more decided; and consequently it may be possible that here, as is the case about Lima, according to Darwin, the elevation may have taken place irregularly in places..." (loc. cit., page 11).), with splendid sections, which I saw in MS., but whether "referred" to me or lent to me I cannot remember. This would be well worth your looking to, as I think he both supports and criticises my views. In Ormerod's Index to the Journal (495/3. "Classified Index to the Transactions, Proceedings and Quarterly Journal of the Geological Society."), which I do not possess, you would, no doubt, find a reference; but I think the sections would be worth borrowing from Forbes. Domeyko (495/4. Reference is made by Forbes in his paper on Bolivia and Peru to the work of Ignacio Domeyko on the geology of Chili. Several papers by this author were published in the "Annales des Mines" between 1840 and 1869, also in the "Comptes Rendus" of 1861, 1864, etc.) has published in the "Comptes Rendus" papers on Chili, but not, as far as I can remember, on the structure of the mountains. Forbes, however, would know. What you say about the plications being steepest in the central and generally highest part of the range is conclusive to my mind that there has been the chief axis of disturbance. The lateral thrusting has always appeared to me fearfully perplexing. I remember formerly thinking that all lateral flexures probably occurred deep beneath the surface, and have been brought into view by an enormous superincumbent mass having been denuded. If a large and deep box were filled with layers of damp paper or clay, and a blunt wedge was slowly driven up from beneath, would not the layers above it and on both sides become greatly convoluted, whilst those towards the top would be only slightly arched? When I spoke of the Andes being comparatively recent, I suppose that I referred to the absence of the older formations. In looking to my volume, which I have not done for many years, I came upon a passage (page 232) which would be worth your looking at, if you have ever felt perplexed, as I often was, about the sources of volcanic rocks in mountain chains. You have stirred up old memories, and at the risk of being a bore I should like to call your attention to another point which formerly perplexed me much — viz. the presence of basaltic dikes in most great granitic areas. I cannot but think the explanation given at page 123 of my "Volcanic Islands" is the true one. (495/5. On page 123 of the "Geological Observations on the Volcanic Islands visited during the Voyage of H.M.S. 'Beagle,'" 1844, Darwin quotes several instances of greenstone and basaltic dikes intersecting granitic and allied metamorphic rocks. He suggests that these dikes "have been formed by fissures penetrating into partially cooled rocks of the granitic and metamorphic series, and by their more fluid parts, consisting chiefly of hornblende oozing out, and being sucked into such fissures.")

LETTER 496. TO VICTOR CARUS. Down, March 21st, 1876.

The very kind expressions in your letter have gratified me deeply.

I quite forget what I said about my geological works, but the papers referred to in your letter are the right ones. I enclose a list with those which are certainly not worth translating marked with a red line; but whether those which are not thus marked with a red line are worth translation you will have to decide. I think much more highly of my book on "Volcanic Islands" since Mr. Judd, by far the best judge on the subject in England, has, as I hear, learnt much from it.
<< 1 ... 8 9 10 11 12 13 14 15 16 ... 38 >>
На страницу:
12 из 38