Оценить:
 Рейтинг: 0

Основы информационных технологий для неспециалистов: что происходит внутри машин

Год написания книги
2021
Теги
<< 1 2 3 4 5 >>
На страницу:
4 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля
Естественно, один из ответов – цена. ПК обычно дешевле из-за жесткой конкуренции на рынке. Более широкий спектр дополнительных компонентов «железа», больше программного обеспечения и возможностей посоветоваться со специалистами, к тому же все это легко доступно. Яркий пример того, что экономисты называют эффектом сетевой выгоды: чем больше других людей применяют что-то, тем полезнее оно окажется для вас, примерно пропорционально количеству других пользователей.

На стороне Mac стоят надежность, качество, эстетическая привлекательность и ощущение, что «все просто работает», а за такое многие потребители готовы приплачивать.

Дебаты продолжаются, и, хотя ни одна из сторон не убеждает другую, в головах у спорящих возникают полезные вопросы, что помогает им задуматься о том, какие есть различия между разными видами вычислительных машин и что в них работает одинаково.

Аналогичные дебаты ведутся и о телефонах. Почти у каждого есть смартфон («умный телефон»), который может запускать программы («приложения»), загруженные из Apple App Store, Google Play Store или иных магазинов приложений. Телефон служит браузером, почтой, часами, камерой, проигрывателем музыки и видео, диктофоном, картой, навигатором, средством для сравнения цен в магазинах, а иногда по нему даже звонят и общаются. Обычно примерно три четверти моих студентов владеют iPhone, и почти все остальные – смартфоном на ОС Android от разных поставщиков. iPhone стоят дороже, но они обеспечивают более плавную интеграцию с экосистемой компьютеров, планшетов, часов, музыкальных плееров и облачных сервисов от Apple: вот вам и еще один пример эффекта сетевой выгоды. Лишь изредка кто-то признаётся, что пользуется только «кнопочным телефоном», у которого нет дополнительных функций, кроме возможности совершать звонки. Я проводил исследование в США среди сравнительно обеспеченных людей, а в других странах и группах населения смартфоны на Android будут распространены гораздо шире.

И снова у людей есть веские причины для выбора: функциональность, экономичность, эстетическая привлекательность, – но за всем этим, как и в случае с ПК и Мас, скрывается весьма схожая аппаратура для вычислений. Давайте посмотрим, почему так.

1.1. Логическое построение

Если бы нарисовали абстрактное изображение простого стандартного компьютера, его логическую и функциональную архитектуру, то оно выглядело бы как схема на рисунке 1.2, причем как для Мас, так и для ПК. Процессор, какая-нибудь оперативная память, внешняя память и многие другие компоненты, соединенные набором проводов – шиной, которая передает информацию между ними.

Если мы представим в такой форме телефон или планшет, то рисунки будут похожи, но мышь, клавиатура и дисплей объединятся в один компонент, появятся экран и многие другие скрытые компоненты, такие как компас, датчик поворота экрана, GPS-приемник для определения вашего физического местоположения.

Базовая организация – процессор, память и хранилище для инструкций и данных, а также устройства ввода и вывода – была стандартной с 1940-х годов. Ее часто называют архитектурой фон Неймана в честь Джона фон Неймана, который описал ее в цитируемой выше статье 1946 года. Хотя и сейчас порой возникают дискуссии о том, не получает ли фон Нейман слишком много славы за работу, проделанную другими, его статья написана столь ясно и познавательно, что ее стоит прочесть даже сегодня. Например, цитата в начале текущей главы – это первое предложение его статьи. В переводе на современную терминологию, процессор обеспечивает арифметические операции и управление, оперативная и внешняя память – хранение в памяти, а клавиатура, мышь и дисплей взаимодействуют с человеком-оператором.

Рис. 1.2. Архитектурная схема простого идеализированного компьютера

Примечание по терминологии: процессор исторически назывался ЦПУ, или центральное процессорное устройство, но сейчас его часто именуют просто «процессор». Оперативную память часто называют ОЗУ, или оперативное запоминающее устройство, а внешнюю память – диск или накопитель, что отражает разницу в их материальных воплощениях. В основном я буду использовать слова «процессор», «память» и «хранилище», но иногда вы встретите старые термины.

1.1.1. Процессор

Процессор – это мозг компьютера, если такое слово можно здесь применить. Он выполняет арифметические вычисления, перемещает данные, управляет работой других элементов. Процессору доступен лишь ограниченный набор базовых операций, но он проводит их с невероятной быстротой, совершая миллиарды действий в секунду. На основе результатов предыдущих вычислений ЦПУ может решать, какие операции проводить дальше, поэтому он сравнительно независим от своих пользователей-людей. В главе 3 мы уделим этому компоненту больше времени, потому что он играет важную роль.

Если вы зайдете в магазин онлайн или офлайн, чтобы купить компьютер, то наткнетесь на описание всех компонентов, где обычно указываются загадочные аббревиатуры и не менее загадочные цифры. Например, вам может встретиться такое описание процессора – «2.2 GHz двухъядерный Intel Core 17», как в одном из моих компьютеров. Что это такое? Данный процессор произведен компанией Intel, a Core i7 – это название их обширной линейки. Он имеет два процессорных блока в одном корпусе: в этом контексте «ядро» синонимично «процессору». Любое ядро – само по себе процессор, однако в ЦПУ может входить несколько ядер, которые работают либо вместе, либо раздельно, но вычисления ускоряются в любом случае. Чаще всего приемлемо определять такую конструкцию как «процессор» независимо от того, сколько в ней ядер.

«2,2 ГГц» – это более интересная часть. Скорость процессора можно измерить, пусть даже примерно, подсчитав количество операций, команд или их частей, которые он способен произвести за секунду. Для пошагового выполнения своих основных операций процессор полагается на внутренние часы, которые «отбивают ритм», как сердцебиение или метроном. Один из показателей скорости – количество таких тактов в секунду. Один удар или такт в секунду называется одним герцем (сокращенно Гц) в честь немецкого инженера Генриха Герца, который в 1888 году открыл, как получать электромагнитное излучение, что напрямую привело к появлению радио и других беспроводных систем. Радиостанции вещают на частотах, измеряемых в мегагерцах (миллионах герц), например 102,3 МГц. Современные компьютеры, как правило, функционируют с частотой в миллиарды герц, или гигагерц – ГГц. Значит, мой довольно обычный процессор в 2,2 ГГц работает со скоростью 2 200 000 000 тактов в секунду. Человеческое сердце бьется с частотой примерно 1 Гц, или почти 100 000 ударов в день, то есть около 30 миллионов ударов в год. Итак, каждое ядро в моем процессоре за одну секунду выполняет столько операций, сколько мое сердце совершило бы за 70 лет.

Выше мы познакомились с некоторыми «числовыми» приставками вроде «мега» и «гига», которые весьма распространены в компьютерных системах. Мега – это один миллион, или 10

, а гига (ударение на первый слог) – один миллиард, или 10

. Вскоре мы познакомимся с другими приставками, полный список которых вы можете найти в глоссарии.

1.1.2. Оперативная память

Оперативная память хранит информацию, которая активно используется процессором и другими частями компьютера, причем ЦПУ способно изменять ее содержимое. В оперативной памяти содержатся не только данные, с которыми в данный момент работает процессор, но и инструкции по совершаемым операциям. Это чрезвычайно важный момент: загружая различные инструкции в память, мы можем «поручать» процессору разные вычисления. Благодаря этому ЭВМ с хранимой программой становится устройством общего назначения. Один и тот же компьютер способен запускать текстовый редактор и электронные таблицы, просматривать веб-страницы, отправлять и получать электронную почту, поддерживать связь с друзьями на Facebook[11 - Принадлежит компании Meta, признанной экстремистской и запрещенной на территории РФ.], помогать с налогами и проигрывать музыку. И все это благодаря размещению подходящих инструкций в памяти. Важность концепции хранимой программы невозможно переоценить.

Оперативная память предоставляет место для хранения информации во время работы компьютера. В ней содержатся инструкции программ, которые на данный момент активны, – например, Word, Photoshop или браузера. Также в ней хранятся их данные: редактируемые документы, изображения на экране, воспроизводимая в данный момент музыка. Наконец, там же размещаются инструкции оперативной системы – Windows, macOS или какой-либо иной, – которая работает за кулисами и позволяет вам запускать несколько приложений одновременно. Мы поговорим о приложениях и оперативных системах в главе 6.

Оперативную память также называют памятью с произвольным доступом (англ, random access memory, или RAM, а в русской терминологии – ОЗУ, оперативное запоминающее устройство), потому что процессор может одинаково быстро достать информацию из любой части устройства. Если немного упростить, то доступ к ячейкам памяти в случайном порядке не приводит к потере скорости. Хотя видеокассеты давно ушли в прошлое, возможно, вы помните, что если вам хотелось посмотреть конец фильма, то приходилось ускоренно перематывать вперед (плавно!) от начала. Такой доступ называется последовательным.

Как правило, ОЗУ энергозависимо, то есть содержимое памяти исчезает при отключении электричества, и вся активная в данный момент информация теряется. Вот почему разумно сохранять свою работу почаще, особенно на настольном компьютере, чтобы не навлечь на себя истинное бедствие, случайно выдернув шнур питания.

Ваш компьютер имеет фиксированный объем оперативной памяти. Ее емкость измеряется в байтах. Один байт — это минимальный объем памяти, которого достаточно для хранения одного символа вроде W или или короткого числа, такого как 42, или фрагмента более крупного значения. В главе 2 будет показано, в какой форме информация хранится в памяти и других частях компьютера, поскольку это один из фундаментальных вопросов вычислительной техники. Но пока вы можете представить себе память как громадный набор одинаковых маленьких коробочек, пронумерованных до нескольких миллиардов. Каждая из них содержит в себе небольшое количество информации.

Что такое емкость? В ноутбуке, на котором я сейчас печатаю, емкость оперативной памяти составляет 8 миллиардов байт, или 8 гигабайт (8 Гб), чего, возможно, слишком мало. Причина в том, что для ускорения вычислений обычно требуется увеличение объема памяти, поскольку ее никогда не хватает на все программы, которые одновременно хотят ее использовать, и требуется время, чтобы извлечь из нее части неактивной программы, освобождая место для чего-то нового. Если вы хотите, чтобы ваш компьютер работал быстрее, то, скорее всего, лучший вариант – купить больше «оперативки». По крайней мере, если предусмотрена возможность расширения памяти, что бывает не всегда.

1.1.3. Внешняя память

Оперативная память обладает большой, но ограниченной емкостью для хранения информации, и ее содержимое исчезает при отключении питания. Внешняя память не теряет размещенные в ней данные, даже когда электричество отключается. Существует два основных вида внешней памяти: более старый – жесткий (магнитный) диск, или накопитель на жестком диске (HDD), и более современное устройство – твердотельный диск, или SSD. Оба вида накопителей гораздо объемнее, чем оперативная память, и они не энергозависимы, то есть информация на любом диске не сотрется, даже если пропадет электропитание. Данные, инструкции и все остальное содержатся во внешней памяти в течение длительного времени и лишь ненадолго переносятся в оперативную память.

Жесткий диск хранит информацию, задавая направление намагничивания крохотных участков магнитного материала на вращающихся металлических поверхностях. Данные содержатся на концентрических дорожках, которые записываются и считываются датчиком, перемещающимся с дорожки на дорожку. Жужжание и щелчки, которые вы слышите при работе старого компьютера, издает диск, перемещая датчик в нужные места на поверхности. Поверхность диска вращается с огромной скоростью, как минимум 5400 оборотов в минуту. На изображении стандартного диска ноутбука (рис. 1.3) показаны поверхность и датчик. Диаметр тарелки жесткого диска составляет 6,35 см (2,5 дюйма).

Хранение одного байта на диске примерно в 100 раз дешевле, чем на ОЗУ, но при этом доступ к информации происходит медленнее. Дисководу требуется примерно 10 миллисекунд, чтобы добраться до определенной дорожки на поверхности, и скорость передачи данных составляет около 100 Мб/с.

Рис. 1.3. Внутренняя структура жесткого диска

Десять лет назад почти во всех ноутбуках стояли магнитные жесткие диски. Сегодня почти все снабжены SSD-накопителями, которые используют не вращающееся оборудование, а флеш-память. Она энергонезависима, поскольку информация содержится в ее схемах в виде электрических зарядов. Даже при отключении питания они не исчезают из индивидуальных элементов схемы. Сохраненные заряды можно считывать для определения того, какое значение они отображают, а также стирать и перезаписывать с новым значением. Флеш-память работает быстрее, легче, надежнее, не выходит из строя при падении и требует меньше энергии, чем обычный дисковый накопитель, поэтому ее применяют в сотовых телефонах, камерах и других устройствах. Цена за байт пока что выше, чем у HDD, но снижается. Преимущества SSD-накопителей настолько убедительны, что они в значительной степени вытеснили механические диски в ноутбуках.

Обычный SSD для ноутбука вмещает от 250 до 500 Гб. Различные внешние диски, которые можно подключить к разъему USB, имеют емкость до нескольких терабайт (Тб), и они по-прежнему основываются на вращающихся механизмах. «Тера» означает триллион, или 10

, и это еще одно обозначение, с которым вы будете часто сталкиваться.

Кстати, насколько велик терабайт или гигабайт? Один байт хранит один буквенный знак стандартного английского алфавита. Роман «Гордость и предубеждение» объемом около 250 бумажных страниц содержит 680 000 знаков, и тогда 1 Гб может хранить около 1500 копий этого произведения

. Впрочем, мне бы вполне хватило одной копии, а на свободное место я записал бы какую-нибудь музыку. Одна минута музыки в формате MP3 занимает около 1 Мб. Значит, если я запишу МР3-версию одного из моих любимых звуковых компакт-дисков The Jane Austen Songbook объемом около 60 Мб, то в одном гигабайте памяти хватит места еще для 15 часов музыки. Сериал «Гордость и предубеждение» 1995 года (производство ВВС, в главных ролях Дженнифер Эль и Колин Фёрт) на двух DVD занимает менее 10 Гб, поэтому я могу сохранить на одном терабайте его и еще сотню подобных фильмов.

На примере дискового накопителя очень удобно объяснять различия между логической структурой и физической реализацией. Программы вроде File Explorer («Проводник») для Windows или Finder для macOS отображают содержимое диска в виде иерархии папок и файлов. Но хранить сами данные можно на вращающемся оборудовании, в интегральных схемах без подвижных частей или на чем-то совершенно другом. Тип накопителя на компьютере не имеет значения. Аппаратное обеспечение в виде диска и программное обеспечение в рамках ОС, называемое файловой системой, работают вместе, создавая организационную структуру. Мы вернемся к этой теме в главе 6.

Такая логическая организация настолько хорошо подходит людям (или, возможно, мы уже так сильно к ней привыкли), что ее применяют и в других устройствах, даже если там она реализуется совершенно иными аппаратными средствами. Например, программа, которая обеспечивает доступ к информации на CD или DVD, создает впечатление, что данные хранятся в файловой иерархии, независимо от того, как они располагаются физически. То же самое относится к USB-устройствам, камерам и другим гаджетам, где используются карты памяти. И даже почтенная дискета, ныне полностью вышедшая из употребления, на логическом уровне устроена аналогично. Это хороший пример абстракции, встречающейся повсюду в компьютерных системах. Согласно этой идее, детали физической реализации нужно скрывать. В случае файловой системы, независимо от того, какие технологии задействованы, данные представляются пользователю в виде иерархии файлов и папок.

1.1.4. Другие устройства

Существует множество прочих устройств со специальными функциями. Мышки, клавиатуры, сенсорные экраны, микрофоны, камеры и сканеры дают людям возможность вводить данные. Дисплеи, принтеры и динамики выводят информацию. Сетевые компоненты вроде Wi-Fi и Bluetooth обеспечивают взаимодействие с другими вычислительными устройствами. Различные вспомогательные технологии содействуют пользователям со зрительными, слуховыми или другими ограничениями.

На схеме архитектуры (рис. 1.2) все такие устройства и системы соединены одним набором проводов, называемых шиной, – данный термин заимствован из электротехники. На самом деле внутри компьютера находится много шин, свойства которых зависят от их функций: короткие, быстрые и дорогие соединяют память с процессором, а длинные и медленные, но дешевые, ведут к разъему для наушников. Некоторые из них имеют выход наружу – например, вездесущая универсальная последовательная шина, или USB, которая используется для подключения устройств к компьютеру.

Сейчас мы не станем уделять много времени другим приспособлениям, но иногда я буду их упоминать в том или ином контексте. А пока попробуйте вспомнить все устройства, которые сопутствуют вашему вычислительному устройству или подключены к нему: мыши, клавиатуры, тачпады и сенсорные экраны, дисплеи, принтеры, сканеры, игровые контроллеры, наушники, динамики, микрофоны, камеры, телефоны, датчики отпечатков пальцев, каналы связи с другими компьютерами. Список можно продолжать. Все они эволюционировали так же, как процессор, память и дисковые накопители: быстро менялись физические свойства, обычно в сторону расширения возможностей и увеличения компактности при снижающейся стоимости.

Также стоит отметить, что все эти устройства объединяются. Сотовые телефоны теперь служат часами, калькуляторами, фото- и видеокамерами, проигрывателями музыки и видео, игровыми приставками, считывателями штрих-кодов, навигаторами и даже фонариками.

Смартфон имеет ту же абстрактную архитектуру, что и ноутбук, хотя и с существенными отличиями в реализации из-за ограничений по размеру и мощности. В телефонах нет жестких дисков, которые показаны на рис. 1.3, но у них есть флеш-память для хранения информации (списков контактов, изображений, приложений и тому подобного), когда телефон выключен. К ним можно присоединить не так много внешних устройств, но в них обычно есть гнездо для наушников и USB-разъем. Крошечные камеры настолько дешевы, что большинство телефонов имеют по одной с каждой стороны. Планшеты, такие как iPad и его конкуренты, занимают другую нишу в пространстве возможностей, но и они – вычислительные машины с такой же общей архитектурой и схожими компонентами.

1.2. Механическая конструкция

На занятиях я раздаю всевозможные образцы «железа» (найденные за десятки лет лазания по помойкам) со снятыми кожухами. В информатике столь много абстрактного, что бывает довольно полезно увидеть и потрогать диски, чип с интегральными схемами, пластины, в которые они встроены, и т. д. Также интересно посмотреть на эволюцию некоторых устройств. Например, современный жесткий диск ноутбука внешне неотличим от своих предшественников, выпущенных десять или двадцать лет назад. Емкость более нового диска увеличилась в 10-100 раз, но эти улучшения невидимы. То же самое относится и к картам памяти (SD), которые мы используем, например, в камерах. Их современные корпуса идентичны тем, что применялись несколько лет назад (рис. 1.4), но емкость карт намного выше, а цена ниже.

Так, изображенная здесь карта на 32 Гб стоит меньше 10 долларов.

Рис. 1.4. SD-карты весьма разной емкости

С другой стороны, в печатных платах, на которых размещены компоненты компьютера, наблюдается явный прогресс. Сегодня компонентов меньше, потому что внутри находится больше микросхем, проводка тоньше, а соединительные контакты («штырьки») более многочисленны и расположены гораздо плотнее, чем 20 лет назад.

Рис. 1.5. Печатная плата для ПК, выпущена ок. 1998 года.

Размер 12 ? 7,5 дюймов (30 ? 19 см)

<< 1 2 3 4 5 >>
На страницу:
4 из 5

Другие электронные книги автора Брайан Керниган