Оценить:
 Рейтинг: 0

Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность

Год написания книги
2018
Теги
<< 1 2 3 4 5 6 >>
На страницу:
3 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

Легко недооценить новаторские идеи, если они родились не в результате серьезных размышлений, а во время игры. Кто мог предположить, что небольшая перемена в правилах (новая степень, новая визуализация, новое число) превратит фантазию в нечто официально признанное?

Не думаю, что математики на том пикнике думали о таких вещах, когда склонились над игрой в жесткие крестики-нолики. Но в этом и не было необходимости. Осознаём мы это или нет, но логическая игра по изобретению логических игр оказывает влияние на всех нас.

Глава 2

Как математику видят школьники?

Увы, эта глава будет краткой и мрачной. Я прошу прощения. Но я слишком занят, чтобы просить прощения даже за другие вещи, например за мои душеразжижающие уроки математики.

Вы понимаете, что я имею в виду. Для множества школьников заняться математикой означает записать карандашом предписанную последовательность действий. Математические символы ничего не символизируют; они просто пляшут по странице, выполняя бестолковые хореографические упражнения.

Вся эта математика, приятель, –

Побасенки и выдумки абака,

Сплошь синусы да греческие буквы,

Не значащие ровно ничего[14 - Пародия на монолог Макбета из одноименной пьесы Шекспира (акт V, сцена 5): «Жизнь – это история, рассказанная идиотом, полная шума и ярости, ничего не значащая». – Прим. пер.].

Позвольте принести два кратких извинения. Во-первых, я прошу прощения у своих учеников за то, что я часто заставлял их чувствовать себя как персонаж на этой картинке. Я пытался избежать подобных ситуаций; кроме того, я пытался отвечать на все электронные письма, экономить на мороженом и посещать парикмахерскую чаще, чем раз в четыре месяца. Пожалуйста, простите, ведь я обычный человек и ничто человеческое мне не чуждо.

Во-вторых, я извиняюсь перед математикой за все нанесенные мною раны. В свою защиту могу сказать: госпожа Математика, вы живете в неосязаемой башне количественных концепций, зацементированных абстрактной логикой, поэтому вряд ли я оставил на вашем теле глубокие шрамы. Но я не настолько заносчив, чтобы не попросить прощения.

Вот и все в этой главе. Обещаю: следующая будет гораздо более взрывной, как и любой хороший сиквел.

Глава 3

Как математику видят математики?

Тут все очень просто. Математика похожа на язык.

Курьезный язык, я не спорю. Насыщенный, лаконичный и требующий кропотливого чтения. За то время, пока я успею проглотить пять глав «Сумерек»[15 - По правде говоря, я скорее уж фанат «Голодных игр».], вы, возможно, так и не перелистнете страницу вашего учебника по математике. Этот язык приспособлен для того, чтобы рассказывать некоторые истории (например, о соотношениях между кривыми и уравнениями), но не в силах поведать другие (например, об отношениях между девушками и вампирами). Поэтому он обладает определенным лексиконом и полон слов, которых нет в другом языке. Например, даже если я переведу формулу

на привычный английский, она останется бессмыслицей для тех, кто не знаком с рядами Фурье, так же как «Сумерки» – бессмыслица для тех, в ком не играют подростковые гормоны.

Но все-таки кое в чем математика – обычный язык. Пытаясь добиться понимания, математики используют стратегии[16 - Майкл Першен, удивительный человек и обладатель самого аналитического интеллекта на свете, сформулировал идеи этих «стратегий» раньше, чем они пришли мне в голову. Я благодарю его за помощь при написании этой главы.], знакомые большинству читателей. Они формируют мысленные образы. Они составляют парафразы в своей голове. Они пропускают отвлекающие формальности. Они проводят параллели между тем, что читают, и тем, что уже знают. И, как ни странно, они испытывают эмоции: радуются, веселятся или брезгливо кривятся, когда читают научные тексты.

За одну короткую главу нельзя научить бегло говорить на математическом языке, это не легче, чем научить американца бегло говорить по-русски. Филологи могут часами дискутировать о четверостишии Джерарда Мэнли Хопкинса[17 - Джерард Мэнли Хопкинс (1844–1889) – английский поэт, католический священник. – Прим. пер.] или о двусмысленной фразе из электронного письма. Математики тоже могут расходиться во мнениях по определенным вопросам. У каждого своя оригинальная точка зрения, сформированная жизненным опытом и личными ассоциациями.

Тем не менее я хочу предложить вашему вниманию несколько вольных переводов, несколько беглых взглядов на стратегию, с помощью которой математики могут читать актуальные математические статьи. Назовем ее Теорией закорючек 101[18 - Тут пародируется типичное название вводного курса математического анализа в американских университетах: Calculus 101. – Прим. науч. ред.].

Обычно я слышу от школьников вопрос: «Имеет ли значение, что я перемножу сначала: 11 и 13 или 7 и 13?» Ответ («Нет») менее интересен, чем подоплека вопроса: с точки зрения моих студентов, умножение – это действие, операция, которую вы делаете. Один из труднейших уроков, который я преподаю им, состоит в том, что иногда это не так.

Вы не должны воспринимать 7 ? 11 ? 13 как команду. Вы также можете назвать это число 1002 – 1, или 499 ? 2 + 3, или 5005/5, или Джессика, или Число-которое-спасет-планету-Земля, или Старое доброе 1001[19 - Ср: «Он сказал мне, что в 1886 году придумал оригинальную систему нумерации и что в течение немногих дней перешел за двадцать четыре тысячи. Он ее не записывал, так как то, что он хоть раз подумал, уже не стиралось в памяти. Первым стимулом к этому послужила, если не ошибаюсь, досада, что для выражения “тридцать три песо” требуются две цифры или три слова вместо одного слова или одной цифры. Этот нелепый принцип он решил применить и к другим числам. Вместо “семь тысяч тринадцать” он, например, говорил “Максимо Перес”; вместо “семь тысяч четырнадцать” – “железная дорога”; другие числа обозначались как “Луис Мелиан Лафинур”, “Олимар”, “сера”, “трефи”, “кит”, “газ”, “котел”, “Наполеон”, “Агустин де Ведиа”. Вместо “пятьсот” он говорил “девять”. Каждое слово имело особый знак, вроде клейма, последние большие числа были очень сложны… Я попытался объяснить ему, что этот набор бессвязных слов как раз нечто совершенно противоположное системе нумерации. Я сказал, что, говоря “365”, мы называем три сотни, шесть десятков, пять единиц – делаем анализ, которого нет в его “числах”, вроде “негр Тимотео” или “взбучка”. Фунес меня не понимал или не хотел понять» (Хорхе Луис Борхес, «Фунес, чудо памяти». Пер. Е. М. Лысенко). – Прим. науч. ред.]. Но если 1001 – имя, похожее на имена других друзей из мира чисел, то 7 ? 11 ? 13 – причудливое и произвольное прозвище. Точнее говоря, это официальное имя из свидетельства о рождении.

7 ? 11 ? 13 – это результат факторизации (то есть разложения на простые множители), задающий объемную точку зрения.

Некоторые ключевые фоновые знания: сложение скучно. А именно: записывать 1001 как сумму двух чисел – поистине тоскливое занятие. Вы можете представить это число в виде суммы 1000 + 1, или 999 + 2, или 998 + 3, или 997 + 4… и так далее, и так далее, пока вы не впадете в кому от скуки. Это разложение на слагаемые не говорит нам ничего особенного о числе 1001, потому что все числа можно разложить на слагаемые практически одинаковым способом (например, можно записать число 18 в виде суммы 17 + 1, или 16 + 2, или 15 + 3…). Визуально это похоже на деление одной кучи на две. Без обид, но копаться в кучах глупо.

Умножение – вот настоящее веселье. Чтобы не быть чужим на этом празднике жизни, вам стоит применить первое стратегическое правило чтения математических текстов: формирование мысленных образов.

Как показано на рисунке на предыдущей странице, умножение сводится к сеткам и массивам. Число 1001 можно рассматривать в качестве гигантской конструкции из кубиков: 7 в ширину, 11 в длину и 13 в высоту. Но это только начало. Вы можете представить это число как 11 слоев из 91 кубика каждый, а если вы наклоните голову, то увидите 7 слоев по 143 кубика в каждом. Все эти способы разложения числа 1001 становятся очевидны благодаря факторизации. Но почти невозможно разобрать это число без кропотливых вычислений, просто глядя на сочетание цифр.

Факторизация – это ДНК числа. Благодаря факторизации вы можете понять, на что делится данное число, а на что нет. Если математика – это мастер-класс по кулинарии, то произведение 7 ? 11 ? 13 – это не рецепт блинчика, а сам блинчик.

Для типичных фанатов число ? – таинственная руна, символ математической магии. Они размышляют над его иррациональностью, запоминают цепочку из тысячи цифр и отмечают 14 марта День ?, сочетая наиболее славное искусство человечества (приготовление сладких пирогов) с наименее славным (пижонство). Для широкой же публики число ? – это объект одержимости и благоговейного трепета. Вокруг него сложилось нечто вроде религиозного культа.

А для математиков ? – это приблизительно 3.

Что до бесконечной катушки знаков после запятой, которая так пленяет профанов, то математиков это не тревожит. Они знают, что математика – нечто большее, чем точные вычисления. Это быстрая прикидка и ловкое округление. Интуиция помогает оптимизировать и упрощать. Разумное огрубление – еще одно жизненно важное стратегическое правило чтения математических текстов.

Возьмем формулу S = ?R?, которую многие школьники слышат так часто, что фраза «площадь круга» вызывает у них рефлекторное желание закричать: «Пи эр квадрат!» Они как агенты глубокого внедрения с промытыми мозгами. Но что значит эта формула? Почему это так?

Ладно, забудьте о числе 3,14159. Раскрепостите сознание. Просто поглядите на геометрические фигуры: r – это радиус круга, длина отрезка; r? – это площадь квадрата (он изображен на чертеже). А теперь вопрос на ? долларов: как площадь круга соотносится с площадью этого квадрата?

Очевидно, что площадь круга больше. Но не в четыре раза больше, потому что четыре квадрата покроют не только круг, но и дополнительную часть плоскости. Кроме того, присмотревшись, вы поймете, что площадь круга немного больше, чем площадь трех квадратов.

Это именно то, что утверждает наша формула: площадь круга чуть-чуть больше, чем 3 ? r?.

Если вы хотите установить точное значение числа ? (почему 3,14, а не 3,19?), вам придется прибегнуть к доказательству. (Есть несколько великолепных наглядных доказательств, мое любимое заключается в том, чтобы снимать с круга слой за слоем, как будто кожицу с луковицы, и в итоге получить многоугольник[20 - Посмотрите милый мультфильм на эту тему: https://www.geogebra.org/m/WFbyhq9d (https://www.geogebra.org/m/WFbyhq9d).].) Но математики, что бы они ни доказывали, не всегда исходят из первичных принципов. Как и представители других профессий, от плотников до смотрителей зоопарка, они с радостью используют какой-нибудь инструмент, даже не зная в точности, каким образом он сконструирован, до тех пор, пока у них есть ощущение, что он работает.

«Постройте график исходя из уравнения» – знакомое домашнее задание. Я и сам его задавал. Кроме того, это зародыш порочного мифа: якобы графики являются самоцелью. На самом деле их построение не похоже на решение уравнений или выполнение операций. График – это не конечный пункт, а всегда не более чем средство.

График – это способ визуализировать данные, картинка, которая рассказывает историю. Он представляет собой еще одну могущественную стратегию чтения математических текстов: превратить статику в динамику.

Возьмем уравнение, приведенное выше: y = 1/x?. Здесь x и y – пара взаимосвязанных чисел. Вот несколько примеров:

Уже просматривается несколько закономерностей. Но чем лучше наши технические приемы, тем больше мы видим, и таблицы – не модный инструмент. Из бесконечных пар x – y, которые подходят нашему уравнению, таблица, как бегущая строка биржевых индексов, может показать всего лишь несколько. Нам нужен инструмент визуализации получше: математический аналог телевизионного экрана.

На сцене появляется график.

Рассматривая x и y как своего рода широту и долготу, мы преобразуем каждую неосязаемую пару чисел в нечто геометрическое – точку. Бесконечное множество точек становится непрерывной кривой линией. И тогда возникает история, рассказ о движении и изменении.

? Когда x уменьшается, стремясь к нулю (

/

,

/

,

/

…), y раздувается до немыслимых величин (25, 3600, 1 000 000…).

? Если x увеличивается (20, 40, 500…), y скукоживается до микроскопических чисел (
<< 1 2 3 4 5 6 >>
На страницу:
3 из 6