Оценить:
 Рейтинг: 0

Экспонента. Как быстрое развитие технологий меняет бизнес, политику и общество

Год написания книги
2021
Теги
<< 1 2 3 4 >>
На страницу:
2 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля
Такое сочетание дисциплин как раз по мне. Я ребенок микрочипа, родившийся через год после выпуска первого коммерческого компьютера; молодой адепт интернета, студентом открывший для себя Сеть; профессионал технологической индустрии, поскольку запустил свой первый сайт для британской газеты Guardian в 1995 году. С 1998 года я основал четыре технологические компании и инвестировал в тридцать с лишним стартапов. Я пережил «пузырь доткомов» на рубеже тысячелетий. Позже я руководил группой инноваций в компании Reuters, где наши команды выпускали неожиданные, иногда абсолютно невероятные продукты и для менеджеров хедж-фондов, и для фермеров в Индии. Несколько лет я работал с венчурными капиталистами в Европе, поддерживая самых амбициозных создателей технологий, которых мы только могли отыскать, и до сих пор активно инвестирую в технологические стартапы. В качестве инвестора я разговаривал с сотнями основателей технологий в таких разных областях, как искусственный интеллект, передовая биология, устойчивое развитие, квантовые вычисления, электромобили и космические полеты.

Однако мое образование связано с социальными науками. В университете я сосредоточивался на политике, философии и экономике, хотя (и это необычно) посещал также курс программирования вместе с группой физиков, которые были куда умнее меня. И мне всегда было интересно то, как технологии преобразуют бизнес и общество. Я работал журналистом сначала в газете Guardian, затем в журнале Economist, и мне приходилось объяснять широкой аудитории сложные темы из мира программной инженерии. Особенно меня интересовали политические последствия внедрения новых технологий. Некоторое время я был членом Ofcom – агентства, которое регулирует работу теле- и радиокомпаний, интернета и медиаиндустрии в Великобритании. В 2018 году я стал членом совета директоров Института Ады Лавлейс[12 - Ада Лавлейс (1815–1852) – английский математик. Известна прежде всего описанием вычислительной машины, проект которой был разработан Чарльзом Бэббиджем. Считается первым программистом в истории. Прим. пер.], который изучает этические последствия использования цифровой информации и искусственного интеллекта в обществе.

В последние нескольких лет я пытаюсь говорить об этих двух культурах в Exponential View – информационном бюллетене и подкасте, где исследую влияние новых технологий на общество. Я создал его после того, как мой третий стартап, PeerIndex, был приобретен гораздо более крупной технологической фирмой. PeerIndex применял методы машинного обучения (о которых я подробнее расскажу позже) к большим объемам открытых данных о том, чем люди занимаются онлайн. Мы столкнулись с множеством этических дилемм относительно того, что можно и что нельзя делать с этими данными. После продажи компании у меня появилось пространство и время для исследования этих вопросов в моем информационном бюллетене.

Материалы платформы Exponential View нашли отклик у людей. На момент написания этой книги у меня насчитывалось около двухсот тысяч подписчиков по всему миру, среди них – известные создатели компаний и инвесторы, политики и ученые из ста с лишним стран. Это позволило мне углубиться в наиболее сложные вопросы, вызванные новыми технологиями. При подготовке подкастов я взял более ста интервью у инженеров, предпринимателей, политиков, историков, ученых и руководителей компаний. За шесть с лишним лет в рамках своего исследования я прочитал множество книг, газетных и журнальных статей, блогов и научных статей. Недавно я подсчитал, что, пытаясь понять происходящее, за последние пять лет я прочитал более двадцати миллионов слов. (К счастью, в этой книге слов поменьше.)

Вывод, к которому я пришел в результате всех этих исследований, обманчиво прост. В основе аргументации в этой книге лежат два ключевых утверждения. Первое: новые технологии возникают и масштабируются все более быстрыми темпами, но при этом их стоимость стремительно снижается. Если построить график развития этих технологий, то у нас получится экспоненциально растущая кривая.

Второе: наши институты – от политических норм до систем экономической организации и способов выстраивания социальных отношений – меняются медленнее. На диаграмме адаптация этих институтов выглядела бы как постепенно возрастающая прямая.

В результате возникает то, что я называю экспоненциальным разрывом: пропасть между новыми формами технологий – вкупе с порождаемыми ими новыми подходами к бизнесу, работе, политике и гражданскому обществу – и корпорациями, работниками, политиками и социальными нормами вообще, которые значительно от этих технологий отстают.

Естественно, это порождает еще больше вопросов. Какое воздействие оказывают экспоненциальные технологии на разные сферы – от работы до конфликтов и политики? Как долго будут продолжаться эти экспоненциальные изменения и прекратятся ли они вообще? И что мы – политики, лидеры бизнеса и обычные граждане – можем сделать, чтобы этот экспоненциальный разрыв не разрушил наше общество?

Я попытался структурировать материал книги так, чтобы мои ответы были максимально понятными. Сначала я объясняю, что такое экспоненциальные технологии и почему они возникли. Я считаю, что наша эпоха определяется появлением нескольких новых многоцелевых технологий, каждая из которых совершенствуется со все возрастающей скоростью. Это история, которая начинается с компьютеризации, но также охватывает энергетику, биологию и производство. Размах этих изменений означает, что мы вступили в совершенно новую эпоху человеческой истории и экономической организации, именно ее я и называю экспоненциальной эпохой.

Далее я перехожу к последствиям этого для человеческого общества в целом – к возникновению экспоненциального разрыва. Существует множество причин, по которым созданные человеком институты адаптируются медленно, – от психологических трудностей понимания экспоненциальных изменений до неизбежных проблем, вызванных преобразованиями большой системы. Все это увеличивает пропасть между технологиями и нашими общественными институтами.

Но каковы последствия экспоненциального разрыва на практике? И что мы можем с этим сделать? Вот те вопросы, о которых я пишу далее. Я буду говорить с вами об экономике и работе, о геополитике в торговых отношениях и конфликтах и о взаимоотношениях между гражданами и обществом в более широком смысле.

Во-первых, мы посмотрим, как экспоненциальные технологии влияют на бизнес. В экспоненциальную эпоху технологические корпорации становятся все более влиятельными – подобное могущество раньше и представить было невозможно, – в то время как традиционные компании остаются позади. Это приводит к появлению рынков, на которых победитель получает все. На них господствуют несколько компаний-суперзвезд, а их конкуренты стремительно уходят в никуда. Возникает экспоненциальный разрыв между существующими правилами, регулирующими положение на рынках, монополию, конкуренцию и налоги, и новыми огромными корпорациями, которые на этих рынках доминируют.

Я также покажу, как благодаря появлению этих компаний меняется жизнь сотрудников. Отношения между сотрудниками и работодателями всегда были переменчивы, но сейчас они меняются гораздо быстрее, чем прежде. Компании-суперзвезды предпочитают новые форматы работы – через гиг-платформы[13 - Гиг-экономика – система работы, когда сотрудников не нанимают в штат, а приглашают на конкретные проекты, где они в обозначенные сроки решают поставленные задачи. К этой же категории относится формат работы через платформы, которые соединяют заказчиков и исполнителей. Прим. ред.], что создает проблемы для работников. Существующие законы и практика трудоустройства едва справляются с изменениями в сути труда.

Во-вторых, мы рассмотрим, как экспоненциальные технологии влияют на политическую экономию, то есть на взаимодействие экономики и политики. Здесь в настоящее время происходят два больших сдвига. Первый – это возвращение к местному продукту. Инновации в способах получения сырьевых ресурсов, производства продукции и выработки энергии означают, что мы все чаще сможем производить все три компонента в пределах собственных регионов. В то же время из-за растущей сложности наших экономик большие города становятся важнее, чем прежде, что создает напряженность между местными и национальными властями. Если история промышленной эпохи связана с глобализацией, то история экспоненциальной эпохи – с антиглобализацией. И по мере того как мир будет «возвращаться к местному», в процессе релокализации изменятся и модели глобальных конфликтов. Государства и другие субъекты смогут использовать новые тактики противостояния – от киберугроз до дронов и информационной войны. Инициировать конфликты станет значительно проще и дешевле, поэтому их станет больше. Возникнет разрыв между новыми, высокотехнологичными формами нападения и способностью обществ защищаться.

В-третьих, мы поразмышляем о том, как экспоненциальная эпоха перестраивает отношения между гражданином и обществом. Компании, которые по масштабу и размерам уже напоминают отдельные государства, находятся на подъеме и бросают вызов нашим базовым представлениям о роли частных корпораций. Рынки все больше проникают в пространство общественной сферы и в нашу частную жизнь. Наши общенациональные дискуссии все чаще ведутся на частных платформах. Благодаря появлению экономики данных интимные подробности наших потаенных «я» покупаются и продаются в интернете. В товар превратилось даже то, как мы общаемся с друзьями и формируем сообщества. Но поскольку мы по-прежнему придерживаемся концепции роли рынков, принятой в индустриальную эпоху, у нас еще нет инструментария, способного предотвратить изменения, которые разрушают самые дорогие нам ценности.

Иными словами, экспоненциальный разрыв бросает вызов многим нашим самым важным ценностям. Но это то, на что мы можем направить свои усилия. И поэтому в конце книги я расскажу об общих принципах, необходимых, чтобы обеспечить наше процветание в эпоху экспоненциальных изменений, – от того, как сделать наши институты более жизнеспособными и мобильными в условиях быстрых преобразований, до повышения мощи коллективной собственности и коллективного принятия решений. Я надеюсь, что в результате книга станет комплексным пособием для понимания того, как технологии меняют наше общество и что нам предстоит с этим делать.

Пока я писал книгу, мир кардинально изменился. Когда я только начинал исследования, такого понятия, как COVID-19, не существовало, а локдауны были уделом фильмов о зомби-апокалипсисе. На полпути к завершению чернового варианта страны начали закрывать границы и издавать предписания о самоизоляции – все для того, чтобы предотвратить разрушение вирусом системы здравоохранения и экономики.

С одной стороны, пандемия представлялась явно низкотехнологичной. На протяжении тысячелетий локдауны служили средством предотвращения эпидемий. В карантинах нет ничего нового: это слово восходит к временам чумы, «черной смерти», когда морякам, прежде чем сойти на берег, приходилось сорок дней проводить в изоляции. И тот факт, что глобальную экономику подорвал вирус, напоминает, сколь много стародавних проблем технологии так еще и не смогли решить.

При этом пандемия также подтвердила некоторые из ключевых тезисов этой книги. Распространение вируса продемонстрировало, что экспоненциальный рост контролировать трудно. Он подкрадывается незаметно, а затем происходит взрыв: сегодня кажется, что все в порядке, а уже через мгновение служба здравоохранения оказывается на грани краха из-за перегрузки в связи с новым заболеванием. Людям трудно осознать скорость этих изменений, о чем свидетельствует апатичная и нерезультативная реакция многих правительств на распространение COVID-19, особенно в Европе и США.

В то же время пандемия открыла нам всю мощь последних изобретений. В большинстве развитых стран локдауны оказались возможны только благодаря широкому доступу к быстрому интернету. Большую часть пандемии мы провели дома, уткнувшись в свои телефоны. И что самое поразительное, в течение года ученые разработали десятки новых вакцин, что, как мы увидим, стало возможным благодаря таким инновациям, как машинное обучение. В некотором смысле с помощью COVID-19 экспоненциальные технологии доказали свою силу.

Прежде всего, пандемия продемонстрировала, что технологии экспоненциального века – будь то видеоконференции или социальные сети – внедрены теперь во все сферы нашей жизни. Дальше эта тенденция только усилится. По мере ускорения темпов изменений взаимодействие технологий и других сфер нашей жизни – от демографии до государственного управления и экономической политики – будет становиться все плотнее. Четкие различия между областью технологий и областью, скажем, политики сотрутся. Технология переделывает политику, а политика формирует технологию. Конструктивный анализ любой из этих сфер требует анализа обеих. А теперь подставьте вместо политики экономику, культуру или бизнес-стратегии.

Из-за непрерывного контура обратной связи между технологиями, экономикой, политикой и социологией делать стабильные прогнозы очень трудно. Даже когда я писал эту книгу, в ней постоянно приходилось что-то менять: не успевал я закончить одну главу, как ее нужно было обновлять с учетом нового развития событий. Таковы трудности описания действительности в эпоху экспоненциальных изменений.

Тем не менее я надеюсь, что эта книга останется полезным введением в тему развития технологий и вектора их движения. Мы живем в эпоху, когда технологии становятся лучше, быстрее и разнообразнее с невиданной прежде скоростью. Этот процесс подрывает стабильность многих норм и институтов, определяющих нашу жизнь. И на данный момент у нас нет дорожной карты, которая привела бы нас в такое будущее, которого мы хотим.

Эта книга сама по себе вряд ли сможет стать идеальной картой. Но она поможет нам исследовать местность и найти правильное направление.

    Азим Ажар. Лондон, апрель 2021 года

Глава 1. Предвестник

Я увидел компьютер до того, как узнал, что такое Кремниевая долина. Это был декабрь 1979 года, наш сосед принес домой набор для самостоятельной сборки компьютера. Я помню, как он собирал устройство на полу в гостиной и подключал его к черно-белому телевизору. После того как сосед сосредоточенно ввел несколько команд, экран превратился в гобелен из пикселей.

Для меня, семилетнего мальчишки, эта машина была настоящим чудом. До этого я видел компьютеры только по телевизору и в кино. Теперь же я мог его потрогать. Но как мне сейчас представляется, еще большим чудом было то, что в 1970-х годах такое устройство добралось до скромного пригорода Лусаки в Замбии. Глобальная цепочка поставок была примитивной, системы удаленных покупок практически не существовало, и все же первые признаки цифровой революции уже были налицо.

Этот набор для сборки вызвал у меня огромный интерес. Через два года я получил свой первый компьютер – Sinclair ZX81[14 - Sinclair ZX81 – персональный компьютер, выпущенный компанией Sinclair Research в 1981 году. Историческая важность этой модели состоит в том, что это был первый домашний компьютер, стоивший менее 50 фунтов: машина поставлялась по почтовому заказу в форме набора для самостоятельной сборки по цене 49,95 фунта либо в виде готового собранного изделия по цене 69,99 фунта, что привело к большому объему продаж. Прим. ред.]. Случилось это осенью 1981 года, спустя год после того, как мы переехали в городок неподалеку от Лондона. ZX81 до сих пор стоит у меня на книжной полке. Он был размером с обложку семидюймовой пластинки, а высотой – в два пальца, указательный и средний. По сравнению с другими электронными приметами гостиных начала 1980-х годов – телевизором с кинескопом или большим кассетным магнитофоном, – ZX81 был компактным и легким. Его можно было удержать, зажав большим и указательным пальцами. На встроенной клавиатуре, тугой и ошибок не прощающей, печатать было практически невозможно. Она реагировала только на жесткие акцентированные удары, которыми можно было делать внушение другу. Но из этой коробочки можно было извлечь много чего интересного. Я помню, как выполнял на нем простые вычисления, рисовал незатейливые фигуры и играл в примитивные игры.

Это устройство, которое рекламировали в газетах по всей Великобритании, было настоящим прорывом. За 69 фунтов стерлингов (около 145 долларов в то время) вы получали компьютер с полной функциональностью. Его простой язык программирования в принципе позволял решить любую вычислительную задачу, какой бы сложной она ни была (хотя это могло занять много времени)[15 - In other words, it was a Turing Machine – so named after British mathematician Alan Turing, who devized much of the theory behind computer science. Turing’s tragic death in 1954 meant he never had access to a computer as generally capable as the ZX81, with its 1,024 bytes of memory storage capable of crunching through a superhuman half a million instructions per second.]. Но век ZX81 был кратким. Технологии быстро развивались. Уже через несколько лет мой компьютер с его ступенчатой черно-белой графикой, неуклюжей клавиатурой и медленной обработкой данных устарел. Через шесть лет моя семья перешла на более современную ЭВМ от британской компании Acorn Computers. Acorn BBC Master был впечатляющей зверюгой с полноразмерной клавиатурой и цифровой панелью. Ряд клавиш оранжевого цвета со специальными функциями вполне уместно смотрелся бы в какой-нибудь космической одиссее 1980-х годов.

Внешне компьютер отличался от ZX81, и его «железо» претерпело полную трансформацию. Производительность BBC Master была в несколько раз выше: у него было в 128 раз больше памяти. Он мог использовать шестнадцать различных цветов, хотя одновременно отображал только восемь. Его крошечный динамик мог издавать до четырех разных тонов, чего было достаточно для простого воспроизведения музыки: помню, как он пикал, исполняя «Токкату и фугу ре минор» Баха. Относительная сложность внутреннего устройства BBC Master позволяла использовать мощные приложения, включая электронные таблицы (которыми я никогда не пользовался) и игры (это да).

Еще через шесть лет, в начале 1990-х годов, у меня снова случился апгрейд. К тому времени в компьютерной индустрии произошла консолидация. За успех на рынке боролись такие устройства, как TRS-80, Amiga 500, Atari ST, Osborne 1 и Sharp MZ-80. Некоторые небольшие фирмы добились кратковременного успеха, но в итоге проиграли нескольким набиравшим силу новым технологическим компаниям.

Победителями из смертельной эволюционной схватки 1980-х годов вышли Microsoft и Intel: они оказались самыми приспособленными представителями двух соответствующих видов – операционной системы и центрального процессора. Следующие несколько десятилетий они провели в симбиозе: Intel предоставляла все больше вычислительных мощностей, а Microsoft использовала их для создания лучшего программного обеспечения. Каждое поколение ПО нагружало компьютеры все больше, заставляя Intel совершенствовать свои процессоры. «Что Энди дает, то Билл забирает», – шутили в IT-мире (Энди Гроув – на тот момент CEO Intel, а Билл Гейтс – основатель Microsoft).

Но в 19 лет меня мало интересовала динамика развития IT-индустрии. Я знал только, что компьютеры становятся все быстрее и лучше, и мечтал себе позволить один из них. Студенты, как правило, покупали так называемые PC-клоны – дешевые псевдофирменные ящики, копировавшие персональный компьютер IBM. Это были компьютеры, собранные из различных компонентов, соответствующих стандарту PC, то есть были оснащены новейшей операционной системой Microsoft – программным обеспечением, которое позволяло пользователям (и программистам) управлять «хардом» («железом»).

Мой клон, кубовидный уродец, был оснащен новейшим процессором Intel 80486. Он мог обрабатывать одиннадцать миллионов команд в секунду, что было в четыре-пять раз больше, чем у моего предыдущего компьютера. Кнопка на корпусе с надписью Turbo могла заставить процессор работать процентов на двадцать быстрее. Однако, как в автомобиле, водитель которого слишком часто давит на педаль газа, дополнительная скорость часто приводила к катастрофам.

Этот компьютер поставлялся с четырьмя мегабайтами памяти (или ОЗУ), то есть в четыре тысячи раз больше, чем у ZX81. Графика была потрясающей, хотя и не самой передовой. Я мог выводить на экран 32 768 оттенков цветов, пользуясь не самым современным графическим адаптером, который я подключил к машине. Эта палитра впечатляла, но была не совсем реалистичной: например, плохо отображались оттенки синего цвета. Если бы мой бюджет был на 50 фунтов стерлингов (около 85 долларов в то время) больше, я мог бы купить видеокарту с шестнадцатью миллионами оттенков цветов – так много, что человеческий глаз вряд ли различает некоторые из них.

Десятилетний путь от ZX81 до моего клона PC отражал период экспоненциальных технологических изменений. Процессор клона PC был в тысячи раз мощнее, чем у ZX81, а сам компьютер 1991 года – в миллионы раз эффективнее своего собрата из 1981 года. Эта трансформация стала результатом быстрого прогресса в развивающейся вычислительной индустрии, что выразилось в удвоении скорости компьютеров примерно каждые два года.

Чтобы понять эту трансформацию, необходимо изучить принцип работы компьютеров. В XIX веке английский математик и философ Джордж Буль попытался представить логику с помощью операций, включающих два состояния – ложь и истину. В принципе любую систему с двумя состояниями можно изобразить с помощью чего угодно. Например, вы можете механически представить ее двумя положениями рычага: вверх или вниз. Вы можете теоретически представить ее в виде конфеток M&M’s двух цветов – синих и красных (это, безусловно, вкусно, но непрактично). В итоге ученые решили, что лучше всего эту систему изображать цифрами 0 и 1 (такой двоичный разряд еще называют битом).

На заре вычислительной техники пользоваться Булевой логикой было сложно и громоздко. Именно поэтому компьютеру – а попросту любому устройству, которое могло выполнять операции, используя эту логику, – требовались десятки неуклюжих механических составляющих. Но в 1938 году произошел настоящий переворот: Клод Шеннон, тогда аспирант Массачусетского технологического института, понял, что можно построить электронные схемы с применением Булевой логики, а именно представить включенное состояние как 1, а выключенное – как 0. Это было революционное открытие, давшее толчок созданию компьютеров с использованием электронных компонентов. Первый программируемый электронный цифровой компьютер известен тем, что во время Второй мировой войны им пользовались шифровальщики, в том числе Алан Тьюринг[16 - Алан Тьюринг (1912–1954) – английский математик, логик, криптограф, оказавший существенное влияние на развитие информатики. Во время Второй мировой войны Тьюринг работал в Правительственной школе кодов и шифров, располагавшейся в Блетчли-парке, где была сосредоточена работа по взлому шифров и кодов нацистов. Прим. пер.].

Через два года после окончания войны ученые из Bell Labs разработали транзистор – полупроводниковое устройство, способное управлять электрическим током. Транзисторы могли выполнять функцию переключателей, и их можно было использовать для создания логических вентилей – элементов, способных выполнять элементарные логические вычисления. Если собрать несколько таких логических вентилей вместе, можно было получить работающее вычислительное устройство.

Звучит очень «технически», но смысл простой: новые транзисторы были меньше и надежнее, чем электронные лампы, которые использовались в первых компонентах электронных схем, и они проложили путь к созданию более сложных компьютеров. Созданный в декабре 1947 года первый транзистор был громоздким, собранным из множества деталей, в том числе скрепки для бумаг. Но он работал! С годами транзисторы превратились из такой импровизации в сложные стандартные устройства.

С конца 1940-х годов целью стало уменьшение размеров транзисторов. В 1960 году Роберт Нойс из компании Fairchild Semiconductor разработал первую в мире интегральную схему, которая объединила несколько транзисторов в одном устройстве. Эти транзисторы были крошечными, и по отдельности их невозможно было обработать ни вручную, ни машиной. Их изготавливали с помощью сложного процесса, немного схожего с химической фотографией, – фотолитографии. Специалисты направляли ультрафиолетовый свет через пленку с шаблоном – изображением схемы (похоже на детский трафарет). Схема отпечатывалась на кремниевой пластине; процесс можно было повторять на одной и той же пластине несколько раз, пока определенное количество транзисторов не накладывалось друг на друга. Каждая пластина могла содержать несколько идентичных копий схем, уложенных в сеть. Отрежьте одну копию – и получите кремниевый «чип».

Одним из первых силу этой технологии оценил Гордон Мур – исследователь, работавший на Нойса. Через пять лет после изобретения босса Мур понял, что физическая площадь интегральных схем ежегодно уменьшается примерно на 50 %, при этом количество транзисторов меньше не становится. Пленки (или «маски»), используемые в фотолитографии, становились все более детальными, транзисторы и соединения – все меньше, а сами компоненты – более замысловатыми. Это снижало стоимость и повышало производительность. Новые, более плотно упакованные чипы из меньших компонентов были быстрее старых.

Изучив такой прогресс, Мур в 1965 году выдвинул гипотезу. Он предположил, что эти разработки позволят удвоить эффективную скорость чипа при той же стоимости в течение определенного периода времени. В итоге он остановился на оценке, что каждые два года (в среднем от 18 до 24 месяцев) чипы, не меняясь в стоимости, будут становиться вдвое мощнее[17 - G. E. Moore, “Cramming More Components onto Integrated Circuits,” Proceedings of the IEEE, 86(1), 1965, pp. 82–85. https://doi.org/10.1109/JPROC.1998.658762 (https://doi.org/10.1109/JPROC.1998.658762).]. Мур стал соучредителем компании Intel, крупнейшего производителя чипов в XX веке. Но, вероятно, он более известен благодаря своей гипотезе, которая теперь называется законом Мура.

Этот закон легко трактовать неправильно: он не похож на законы физики. Законы физики, основанные на эмпирических наблюдениях, обладают предсказуемостью. Законы Ньютона не могут быть опровергнуты повседневным человеческим поведением. Ньютон утверждал, что сила равна массе, умноженной на ускорение, – и это почти всегда так[18 - Newton’s laws work at the scale of the everyday and in what is known as “inertial reference frames.” At the very small – the levels of atoms and smaller – we need to rely on quantum physics to describe what is going on. “Non-inertial reference frames,” such as those found when studying cosmology, require different approaches.]. Не имеет значения, что вы делаете или не делаете, какое сейчас время суток или какую прибыль вы намерены получить.

Напротив, закон Мура не предсказывает, это описательный закон. Как только Мур его изложил, компьютерная индустрия – от производителей чипов до обслуживающих их многочисленных поставщиков – начала рассматривать его как цель. Он стал социальным фактом – не чем-то присущим самой технологии, а тем, что существует благодаря пожеланиям компьютерной индустрии. Компании, поставляющие материалы, разработчики электроники, производители лазеров – все они хотели, чтобы закон Мура работал. И он работал[19 - Cyrus C. M. Mody, The Long Arm of Moore’s Law: Microelectronics and American Science, Inside Technology (Cambridge, MA: The MIT Press, 2017), pp. 5 and 125.].

Но это никак не ослабило закон. С тех пор как Мур его сформулировал, он был весьма удачным руководством по компьютерному прогрессу. В чипах действительно становилось больше транзисторов. И они следовали экспоненте, поначалу увеличиваясь в числе не очень заметно, но затем – почти непостижимо.

Посмотрим на следующие графики. На рис. 1 показан рост количества транзисторов на микрочип с 1971 по 2017 год. То, что этот график выглядит таким унылым до 2005 года, свидетельствует о мощности экспоненциального роста. На рис. 2 отражены те же данные, но по логарифмической шкале – шкале, где экспонента изображается прямой линией. Мы видим, что между 1971 и 2015 годами количество транзисторов на чипе увеличилось почти в десять миллионов раз.

Рис. 1. Число транзисторов на микропроцессор в млрд (линейная шкала)

Источник: Our World In Data[20 - Our World in Data – некоммерческий электронный проект, публикующий в открытом доступе данные о глобальных проблемах человечества, таких как болезни, голод, глобальное потепление, войны, катастрофы, социальное неравенство, бедность. Прим. пер.]

<< 1 2 3 4 >>
На страницу:
2 из 4