Fig. 2. The economic one-dimensional price space for the one-good market economy.
Fig. 3. The economic two-dimensional price space for the two-good market economy.
Within the problem of describing agents’ behavior in the market, the role of the good prices P as independent variables, or a coordinates P is considered here to be in many situations a unique one for market economic systems. In these cases we can study market dynamics in the economic price spaces. But market situations occur fairly often in which we need to explicitly take into account the independent good quantity variables Q (the bold Q will designate below all the L quantity coordinates) and consequently to describe economic dynamics in the economic 2?L-dimensional price-quantity spaces. In these scenarios, we can imagine that the whole economic system is located in the multi-dimensional price-quantity space as it is displayed in Fig. 4. We have already used many aspects of this idea naturally when discussing classical economics. We will address any concerns in the upcoming chapters.
Fig. 4. The graphical model of the many-good, many-agent market economy in the economic multi-dimensional price-quantity space. It is displayed schematically in the conventional rectangular multi-dimensional coordinate system [P, Q] where, as usual, bold P and Q designate the price and quantity coordinate axes for all the goods. Again, our model economy consists of the market and the institutional and external environment. The market consists of buyers (small dots) and sellers (big dots) covered by the conventional sphere. Very many people, institutions, and natural and other factors can represent the external environment (cross – hatched area behind the sphere) of the market which exerts perturbations on market agents (pictured by arrows pointing from environment to the market).
3. The Market-Based Trade Maximization Principle and the Economic Equations of Motion
As we saw above in the example of the simplest classical economies, market agents actively make trade transactions, and there are no trade deals at all out of the equilibrium state. As the inclination of market agents’ action is to make deals, we can naturally conclude that market agents and the market as a whole strive to approach an equilibrium state that can be expressed as the natural tendency of the market to reach the maximum volume of trade. This fact can serve as a guide for using the market agents’ trajectories to describe their dynamics. Moreover, this fact gives us grounds to expect that equations of motion can be derived from the market-based maximization principle, used to describe these trajectories. Specifically, the main market rule “Sell all – Buy at all” can be regarded to some extent as a verbal expression of both the tendency of the market toward the trade volume maximum, and the principal ability to describe market dynamics by means of agent trajectories as solutions to certain equations of motion.
The second reason of we have confidence in creating a successful dynamic or time-dependent theory of economic systems in the economic spaces is based on the analogous dynamic theory of physical systems in physical space. We also admit that the reasonable starting point in the study of economic systems dynamics is with equations of motion for a formal physical prototype. This is in spite of the differences between the features of the economic and physical spaces and the features of the economic and physical systems. The type of equations in the spaces of both systems will be approximately the same, though the essence of the parameters and potentials in them will be completely different. It is normal in physics that one and the same equation describes different systems. For example, the equation of motion of a harmonic oscillator describes the motion of both a simple pendulum and an electromagnetic wave. Formal similarity of the equations does not mean equality of the systems which they describe.
The discipline of physics has accumulated broad experience in calculating the physical systems of different degrees of complexity with different inter-particle interactions and interactions of particles with external environments. It makes sense to try and find a way to use these achievements in finding solutions to economic problems. Should any of these attempts prove to be successful, it would establish the opportunity to do numerical research on the influence that both internal and external factors exert on the behaviours of each market agent, as well as the entire economic system’s activity. This process would be done with the help of computer calculations done on the physical economic models. Theoretical economics will have acquired the most powerful research device, the opportunities of which could only be compared to the result of the discovery and exploration of equations of motion for physical systems.
The next step in developing a physical model after selecting an appropriate economic space, is the selection of a function that will assist us in describing the dynamics of an economy, such as the movement of buyers and sellers in the price space. Trajectories in coordinate physical space x(t) (classical mechanics), wave functions ? or distributions of probabilities |?|
(quantum mechanics), Green’s functions G and S-matrices (in quantum physics), etc. are used as such functions in physics. We started above with an attempt to develop the model using trajectories in the price space p(t) by analogy with the use of trajectories x(t) of point-like particles used in classical mechanics. Below, this model is referred to as a classical model or simply, a classical economy. Below, we will use the term classical economy in the broad sense for designating the branch of physical modeling of many-agent economic systems with the help of methods of classical mechanics of many-particle systems. It is important to realize that each selection gives rise to its own equations of motion and, therefore, to different physical economic models. For example, if we select from these trajectory variants, then we obtain the economic Lagrange equations of motion and, therefore, the classical economies as the physical economic models. The discussion will deal with these models in detail in Chapter III. If we select wave functions, then we obtain at the output the economic Schr?dinger equations of motion and, therefore, quantum economies (see Chapters IX and X). Without going into details here, let us say that both the Lagrange and Schr?dinger equations appear as the result of applying the principles of maximization to the whole economic system. This is analogous to the maximization principles, which are explored in physics in obtaining the Lagrange and Schr?dinger equations, respectively.
Strictly speaking, all these principles of maximization, both in economics and physics, are in essence a set of hypotheses. Their validity or effectiveness can be confirmed only via practical calculations and comparison of their results with the respective known laws and phenomena, as well as with the relevant big empirical data. But intuition suggests that this way of developing economic theory is most optimum at the present time. Since it is presently not known how to derive equations of motion in economics, borrowing existing theoretical structural models from physics is helpful. Since analogies can be drawn between the spaces and features of both physics and economics, we can use skeuomorphism and transfer the design models from the one discipline to the other.
We understand that in principle, equations of motion for economics can be derived with the aid of the market-based trade maximization principle. To be honest, we do not fully understand how this exactly works. According to some indirect signs, we can only surmise that the market-based trade maximization principle and maximization principles borrowed from physics, work in one direction. We will examine this more specifically in Chapter VIII.
References
1. A.V. Kondratenko. Physical Modeling of Economic Systems. Classical and Quantum Economies. Nauka (Science), Novosibirsk, 2005.
PART B. Classical Economy
“The classical economist sought to explain the formation of prices. They were fully aware of the fact that prices are not a product of the activities of a special group of people, but the result of an interplay of all members of the market society. This was the meaning of their statement that demand and supply determine the formation of prices… They wanted to conceive the real formation of prices – not fictitious prices as they would be determined if men were acting under the sway of hypothetical conditions different from those really influencing them. The prices they try to explain and do explain – although without tracing them back to the choices of the consumers – are real market prices. The demand and supply of which they speak are real factors determined by all motives instigating men to buy or to sell. What was wrong with their theory was that they did not trace demand back to the choices of the consumers; they lacked a satisfactory theory of demand. But it was not their idea that demand as they used this concept in their dissertations was exclusively determined by “economic” motives as distinguished from “noneconomic” motives. As they restricted their theorizing to the actions of businessmen, they did not deal with the motives of the ultimate consumers. Nonetheless their theory of prices was intended as an explanation of real prices irrespective of the motives and ideas instigating the consumers”.
Ludwig von Mises. Human Action. A Treatise on Economics. Page 62
CHAPTER III. Classical Economies in the Price Space
“Prices are a market phenomenon. They are generated by the market process and are the pith of the market economy. There is no such thing as prices outside the market. Prices cannot be constructed synthetically, as it were. They are the resultant of a certain constellation of market data, of actions and reactions of the members of a market society. It is vain to meditate what prices would have been if some of their determinants had been different. Such fantastic designs are no more sensible than whimsical speculations about what the course of history would have been if Napoleon had been killed in the battle of Arcole or if Lincoln had ordered Major Anderson to withdraw from Fort Sumter.
It is no less vain to ponder on what prices ought to be”.
Ludwig von Mises. Human Action. A Treatise on Economics. Page 395
PREVIEW. What are the Economic Lagrange Equations?
Based on the belief that the dynamics of the many-agent market economies has to some extent a deterministic character, we derived the economic equations of motion by formal analogy with classical mechanics of the many-particle systems. As a result, we naturally obtained the economic Lagrange equations of motion describing dynamics of economic systems in time. It is fascinating that we can interpret Lagrangian as the mathematical classical representation of the market invisible hand concept.
1. Foundations of Classical Economy
The logic of the present Section is the following. With the understanding that, pursuing own various well-defined goals, the market agents behave to some extent in a deterministic way, in this Chapter we are going to outline the adequate and approximate equations of motion for the economy. In order to design a physical model and derive classical equations of motion for economic systems in the price space ab initio, that is with the five general principles of physical economics in mind, we first make similar approximations and assumptions needed to derive the equations of motion for physical systems. This can be found in the course of theoretical physics by Landau and Lifshitz [1, 2]. In this way we derive equations of motion for economic systems, which are similar to equations for physical systems in form, and are considered by us as an initial approximation for a physical economic model of the modelled economic system.
According to the above-stated plan of actions we could confine ourselves in this Chapter to just writing equations of motion analogous to those obtained in classical mechanics. However, we consider it useful to derive a full row of equations and to make additional comments on our actions. As we have indicated before, according to our approach to classical modeling of economic systems, every economic agent, homo negotians, acts not only rationally in his or her own interests, but also reasonably. They negotiate to reach a minimum price for the buyer and a maximum price for the seller, but also leave their counteragent a chance to gain profit from transactions or to achieve some other goals, economic or noneconomic in nature. Otherwise, transactions would take place only once, while all agents would prefer the continuation and stability of their business.
Besides, we presume that external forces are usually inclined to influence market operations positively, establishing common rules of play that favor gaining maximum profit, utility, trade volume, or something else for the whole economic system. Based on these assumptions, we have a firm belief that there are certain principles of optimization, and their effects on market agents result in certain rules of market behavior and certain equations of motion that are followed by all rational or reasonable players spontaneously or voluntarily. In our opinion, it is they who have the leading role in the market.
Concluding, let us repeat that we will derive below the economic Lagrange equations of motion by recognizing inexplicitly the following five general principles of physical economics:
1. The Cooperation-Oriented Agent Principle.
2. The Institutional and Environmental Principle.
3. The Dynamic and Evolutionary Principle.
4. The Market-Based Trade Maximization Principle.
5. The Uncertainty and Probability Principle.
It is evident that the uncertainty and probability effects begin to play significant role in classical economies only for the markets with huge numbers of agents. We do not concern ourselves with these effects within the framework of classical economy because it is much easier to study these problems within the framework of quantum economy (see next two chapters).
2. The Economic Lagrange Equations
Let us proceed to deriving equations of motion for the classical economy shown schematically in Fig. 1. We follow the same procedure as in classical mechanics [1]. To make calculations easier, we will consider here the one-good market economy, that is, only movement in one-dimensional price space with one coordinate P. Transition to a multi-dimensional case does not cause principal complications. We will consider that by the analogy with classical mechanics [1], a state of economy comprising of N buyers and M sellers and being under the influence of the environment is fully described by establishing all prices p
and their first time t derivatives (price changing rate or velocity of movement)
, where i = 1, 2, …, N + M. Let p without subscripts denote the set of all prices p
for short, similar to first and second time derivatives, i.e., for velocities p
and accelerations
. Due to their logic or by definition, equations of motion connect prices, velocities and accelerations. In classical mechanics they are second-order differential equations of time, their solution under assigned conditions at the moment t
, x(t
) and ?(t
), represents the required mechanical trajectories, x(t). We are going to derive similar equations with the same view for our economic system in the price space.
By analogy with classical mechanics we assume that these equations result from the following principle of maximization (the principle of least action or the principle of stationary action in mechanics). Namely, the action S must have the least possible value:
Fig. 1. Graphical model of an economy in the multi-dimensional PQ-space. It is displayed schematically in the conventional rectangular multi-dimensional coordinate system [P, Q] where P and Q designate all the agent price and quantity coordinate axes, respectively. Our model economy consists of the market and the external environment. The market consists of buyers (small dots) and sellers (big dots) covered by the conventional sphere. Very many people, institutions, as well as natural and other factors can represent the external environment (cross – hatched area behind the sphere) of the market which exerts perturbations on market agents, pictured here by arrows pointing from environment to market.
The obtained (1) and (2) lead to equations of motion or Lagrange equations [1]:
Equations of motion represent a system of second-order N + M differential equations of time t for N + M unknown required trajectories p
(t).
These equations employ as yet an unknown Lagrange function or Lagrangian L (p, ?, t) which is to be found on the basis of research or experimental data. We will note that Lagrange functions were used in literature to solve a number of optimization problems of management science [3]. Let us emphasize that determination of the Lagrange function is the key problem that can only be solved in practice by making the data of theoretical calculation fit the experiment. It can not be done using theoretical methods only. But what we can do quickly is to make the first obvious trial step. Here we assume that to a certain degree of approximation, the Lagrange function resembles (in appearance only!) the Lagrange function of its physical prototype, a system of N+M point material particles with certain potentials. All assumptions made here can be thoroughly analyzed later at the second stage of investigation and left unchanged or made more accurate after comparison with the experimental data. Accomplishment of this stage will naturally require great effort and expense. For now, we will accept these assumptions and consider that Lagrange functions have the same form as those of their physical prototype, but all parameters and potentials of the economic system will be chosen on the basis of economic experience, not taken from the physical prototype. We consider that by adjusting parameters and potentials to the experiment we can smooth out the negative influence of assumptions made for solutions of equations of motion obtained in this particular way.