Оценить:
 Рейтинг: 0

Цилиндропоршневая группа двигателей и компрессоров. 100% инновационных элементов ЦПГ

<< 1 2 3 4 5 >>
На страницу:
4 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля

х 10,362 см

= 2072 кгс (20,72 кН),

Эти силы буквально блокируют собственную упругость компрессионного кольца, делают его неподвижным, похожим на режущий инструмент – круглый шабер, жестко «закрепленный в поршне этими огромными силами, интенсивно «прирабатывающий» гильзу цилиндра по себе, то есть по своей, к сожалению, не совсем круглой форме. Результатом является характерная выработка гильзы цилиндра в зоне ВМТ в той или иной мере на всех без исключения отечественных и зарубежных двигателях.

В данном случае особый интерес может представить сравнение газодинамических сил с механическими силами собственной упругости компрессионных поршневых колец с достаточно сложным их расчетом. Например, расчетная сила собственной упругости компрессионного кольца двигателя КАМАЗ 740.13 – 1004030 должна быть в пределах 26,46…40,18 Н, то есть газодинамическая радиальная сила более чем в 500 раз превышает силу собственной упругости кольца! Этот огромный контраст делает очевидным превалирующую роль «газодинамики» над «механикой» в расчетах компрессионных поршневых колец. Причем, это происходит в самые ответственные моменты, когда идет процесс сжигания топливовоздушной смеси и давление в камере сгорания достигает максимального значения. По этой проблеме кроме отечественных исследований имеются хорошие исследования немецкой фирмы Goetze, правда, без учета влияния газодинамики на работу компрессионных колец.

На «обработку» гильзы в зоне ВМТ на тактах «сжатие» и «рабочий ход» тратится существенная часть полезной работы. По этой причине проблема ремонта гильзы цилиндра, которая на три четверти ее длины снизу практически не изнашивается, заключается в растачивании гильзы на всю ее длину на размер диаметра изношенной части (что не всегда возможно) или в восстановлении ее верхней части.

Тем не менее, можно достаточно просто исключить вредное влияние рабочего давления на работу компрессионных колец, если устранить зазор между полками поршневой канавки и торцами компрессионного кольца, а также зазор в замке кольца. Как показали последующие исследования, это практически не представляет каких-либо трудностей. Но в рамках жесткой, неуправляемой схемы уплотнения сделать это не представляется возможным, нужна принципиально новая схема уплотнения, которая автоматически учитывала бы все изменения в процессе работы двигателя, то есть была бы саморегулируемой.

В приведенном примере с двигателем КАМАЗ следует обратить особое внимание на разницу газодинамических сил ?F = 1539кгс (15,40 кН)! На других типах и моделях ДВС полученная закономерность в той или иной степени повторяется. Осевая газодинамическая сила твердо прижимает поршневое кольцо к нижней полке поршневой канавки силой более трех тонн, а радиальная сила пытается выполнять свою функцию – прижимать рабочую поверхность кольца к стенке цилиндра. Понятно, что преодолеть осевую силу, превосходящую почти более чем на 1,5 т, радиальная сила не в состоянии.

Наверное, разработчики должны обратить внимание на эту информацию. Ссылка на то, что в наших учебниках газодинамика по существу не освещается, свидетельствует о том, что пришло время заполнить этот существенный пробел в теории проектирования цилиндропоршневой группы и двигателя в целом.

Прижимая поршневое кольцо к нижней полке поршневой канавки в начале такта «сжатие» и в течение всего такта «рабочий ход», осевая сила блокирует радиальную силу, лишая поршневое кольцо очень важного качества, без которого оно нормально работать просто не может – его упругости. Поршневое кольцо становится конструктивной частью поршня, и только огромные силы, действующие на поршень (для КАМАЗа эта сила равна 22,6 кН), заставляют кольцо смещаться в поршневой канавке в пределах термодинамических зазоров. Причем эти «смещения» отражаются на износе всех контактных пар: стенки цилиндра, рабочей поверхности и торцов кольца, полок поршневой канавки, шатуна, вкладышей и коленчатого вала.

§4. Характер износа компрессионных колец

Форма и содержание износа гильзы цилиндра достаточно наглядно представлены на рис. 1 и в соответствующих пояснениях. Для технолога наибольший интерес представляет сам «режущий» инструмент – компрессионное поршневое кольцо, которое изнашивается при «обработке» гильзы цилиндра, изменяя свои размеры и форму.

Это обстоятельство объясняет огромные механические потери на трение, существенно снижающие КПД двигателя и повышенный износ цилиндра в верхней его части, несмотря на то, что «скоблящие» компрессионные кольца работают в условиях обильной смазки, свободно поступающей в придонную полость поршневой канавки, ограниченной достаточно свободными размерами, о которых подробнее будет изложено ниже.

В данном случае следует обратить внимание на форму износа рабочей поверхности компрессионных колец и поверхностей верхнего и нижнего торцов. Они отличаются по форме и размерам у различных моделей двигателей, причем эти отличия, в основном зависят от соотношения высоты компрессионных колец, радиальной толщины и величины зазора между верхней полкой поршневой канавки и верхним торцом компрессионного кольца.

Рассматривая проблемы нежелательной диспропорции осевой и радиальной газодинамических сил, действующих на компрессионное кольцо, у которого толщина значительно больше высоты кольца, пришлось привлечь технологическую терминологию для объяснения физической сути повышенного износа гильзы цилиндра в ее верхней части. Понятно, что нельзя было оставить без внимания и главного «виновника» столь неприятного изменения формы и размеров гильзы цилиндра и рабочей поверхности самого компрессионного кольца.

В верхней части на стенке гильзы уже нет того количества и такого же качества смазочного слоя масла, как в нижней части цилиндра. Компрессионное кольцо со своими острыми кромками по форме напоминает режущий инструмент – круглый шабер, прижатый «превосходящей» осевой силой к нижней полке поршневой канавки, по сути получивший жесткое закрепление в поршне, как в технологической оправке.

Тем не менее, при движении поршня в верхнее положение компрессионное кольцо «сжимается – разжимается» на величину разницы диаметров цилиндра нижней, охлаждаемой части и верхней части цилиндра, особенно головки его, находящейся в зоне высоких рабочих температур. Дело в том, что, находясь в нижней мертвой точке на рабочем такте «впуск», компрессионному кольцу представлена единственная возможность «расслабиться», установившись по диаметру нижней части гильзы цилиндра, равномерно занимая пространство между стенкой цилиндра и поршнем, выступая из поршня на величину гарантированного термодинамического зазора.

В начале движения на рабочем такте «сжатие» над поршнем создается избыточное давление, которое прижимает компрессионное кольцо к нижней полке поршневой канавки и фиксирует это положение. Причем такое положение сохраняется на тактах «рабочий ход» и «выпуск», так как известно, что в конце рабочего хода поршня в НМТ, над ним сохраняется избыточное давление (так у двигателя КАМАЗ это около 3 МПа).

Под действием огромных сил работы других поршней и соответствующих сил реакции со стороны гильзы цилиндра происходит процесс износа контактных поверхностей. Изменение диаметра цилиндра по высоте заставляет компрессионное кольцо пришабривать гильзу цилиндра по себе, на что тратится дополнительная работа, снижающая и без того низкий КПД двигателя.

Анализ компрессионных колец, отслуживших свой срок, свидетельствует о том, что, потеряв свои упругие качества, компрессионные кольца уподобляются оригинальному режущему инструменту – круглому шаберу.

В результате «шабрения» стенки цилиндра, выполненного из износостойкого чугуна, «шабер» – компрессионное кольцо, изнашивается, его «режущие» кромки притупляются. Эффект «компрессионного кольца – шабера» теперь может объяснить превращение внешних, острых кромок, бывших у нового компрессионного кольца, в радиусные фаски выработавшего свой ресурс кольца (наиболее наглядно это было отмечено на компрессионных кольцах двигателя КАМАЗ). Причем активность этого процесса в известной мере зависит от величины гарантированного термодинамического зазора между торцами кольца и полками поршневой канавки. Чем больше зазор, тем больше угол наклона кольца, активнее износ гильзы цилиндра и кромок кольца, тем больше радиусы скругления кромок.

Действительно, налицо технологический процесс шабрения гильзы цилиндра круглым шабером. Для осуществления этого процесса имеются все необходимые параметры режима: скорость резания, сила резания и глубина резания, активно влияющие на «снятие стружки» со стенки цилиндра, то есть его износа. Если учесть, что на стенке верхней части цилиндра смазочного «материала», чаще всего недостаточно, то можно считать этот процесс действительно активным.

Понятно, что «производительность» процесса снижается из-за наличия масла на стенке цилиндра. В технологических процессах механической обработки деталей прежде, чем шабрить какую-либо поверхность, ее необходимо обезжирить. Тем не менее, имеющиеся огромные силы и наличие достаточно «хорошего» режущего инструмента – компрессионного кольца, вызывают износ гильзы цилиндра и самого кольца, сопровождающийся огромными механическими потерями на трение и соответственно низким КПД двигателя.

Так как максимальная величина зазора между стенкой цилиндра и поршнем в процессе эксплуатации строго регламентирована (для двигателя КАМАЗ это не более 0,15 мм), то такой износ цилиндра – один из обычных факторов, который чаще всего приводит к преждевременному ремонту цилиндропоршневой группы, т.е. капитальному ремонту двигателя.

В начале движения поршня на такте «сжатие», когда в цилиндре отсутствует давление, компрессионные кольца под действием упругих сил сами устанавливаются по гильзе цилиндра, а появившееся избыточное давление фиксирует это положение. При дальнейшем движении поршня между потерявшим упругость компрессионным кольцом и стенкой цилиндра образуется зазор, который достигает максимальных значений в ВМТ в самый неподходящий момент, когда уплотнение должно быть максимально эффективным. Часть этого зазора, находящегося в зонах, сориентированных в плоскости качания поршня, выбирается выступающей частью компрессионного кольца вследствие качания. В этих местах имеются выраженные износы цилиндра, компрессионных колец и поршня, причем с одной стороны износ больше, чем с другой, т.к. идет обработка гильзы цилиндра острой кромкой компрессионного кольца.

Это дает основание полагать, что покрытия рабочей поверхности компрессионных колец твердыми сплавами (хромом, молибденом, и др.) только усугубляет этот процесс. При изнашивании, например хромированной поверхности, частички хрома попадают в смазочное масло. Получается абразивная суспензия, которая увеличивает износ контактных пар, существенно сокращая ресурс ЦПГ и двигателя в целом.

Кроме того, физические свойства компрессионных колец должны обеспечивать более быструю приработку рабочей поверхности кольца по гильзе цилиндра, тем самым, сокращая время обкатки двигателя и вывод его на полную мощность. Твердые покрытия рабочей части кольца существенно увеличивают сроки приработки кольца по гильзе цилиндра, сохраняя отрицательное влияние погрешности формы кольца при его изготовлении на качество уплотнения в течение длительного срока эксплуатации двигателя. Кроме того, сохраняя «режущие» качества колец, не только увеличивается износ цилиндра двигателя и снижается его ресурс, но и увеличиваются силы «резания», повышая механические потери на трение и уменьшая КПД двигателя.

По определению компрессионное кольцо должно быть «слабым» звеном в цилиндропоршневой группе, так как оно менее дорогостоящее в изготовлении и ремонте, чем цилиндр двигателя, то есть не поршневое кольцо должно прирабатывать гильзу цилиндра по себе, а наоборот, поршневое кольцо должно прирабатываться по гильзе цилиндра. Тем не менее, в последние годы лужение стали заменять другими, естественно более дорогими твердыми покрытиями. Например, ведущее предприятие по производству деталей цилиндропоршневой группы для автомобилей и тракторов в России и СНГ ОАО «Костромской завод МОТОРДЕТАЛЬ» изготавливает комплекты поршневых колец с хромированными рабочими поверхностями. Рекламируя свои изделия, изготовители ссылаются на технологии «ведущих мировых производителей», среди партнеров завода называется международный концерн Federal Mogul.

Хотя ГОСТ 621 – 87 не определяет конкретные материалы покрытий, тем не менее, указывает на их существование, оговаривая, например, шероховатость R

«…для рабочих поверхностей с твердым износостойким покрытием…».

В дополнение к этому можно привести следующий факт. Партнер ОАО «КАМАЗа» концерн «Federal Mogul», который в своих рекомендациях, с целью повышения маслосъемных свойств 2-го кольца, предлагает отказаться от износостойкого покрытия, изменить форму с односторонней трапеции на прямоугольную, что вполне укладывается в русле настоящих и ранее опубликованных материалов автора.

Поэтому становится очевидным нецелесообразность применения дополнительных и дорогостоящих гальванических операций нанесения твердых покрытий на рабочую поверхность компрессионных колец любых по мощности и назначению ДВС.

Анализ компрессионных колец двигателя ЗМЗ (Заволжский моторный завод), отслуживших свой срок (высотой 2 мм и радиальной толщиной 4 мм), показал, что кроме обычного износа рабочей поверхности этих колец, на который обычно обращают внимание, и который характерен для компрессионных колец двигателя КамАЗ, имеет место более активный износ нижних торцов. Причем величина этого износа достигает недопустимых значений 0,5 мм и более, характерен для «низких» компрессионных колец с большой разницей высоты и радиальной толщины кольца.

Так как тепловой зазор между верхним торцом компрессионного кольца и верхней полкой поршневой канавки регламентируется в пределах 0,06…0,08 мм, то очевидно, какое значение приобретает столь существенное увеличение зазора. При этом имеют место дополнительные газодинамические и теплофизические потери, падение компрессии и мощности двигателя, повышенный расход топлива, а главное, возникает необходимость в более частой замене моторного масла, которое активнее окисляется и теряет свои свойства под действием высокотемпературных рабочих газов. Кроме того, увеличенный зазор между верхней полкой поршневой канавки и верхним торцом компрессионного кольца, это повышенная возможность попадания копоти, снимаемой со стенки цилиндра верхним торцом верхнего компрессионного кольца при движении поршня в верхнее положение на рабочем такте «выпуск». Попадая на свободные поверхности поршневой канавки и кольца, постепенно копоть накапливается и, под действием огромных температур и давлений превращается сначала в нагар, а затем в кокс. Закоксованность компрессионных колец и поршневых канавок – одна из основных причин заклинивания компрессионных колец, приводящих к серьезной поломке двигателя. Особенно этот процесс характерен для отечественных дизелей, в которых используют минеральные моторные масла, при этом нарушая сроки его замены.

Дальнейшие исследования показали, что такой процесс активного износа характерен для технологической операции «притирания» поверхности металлической детали режущим инструментом «притиром».

Причем, здесь также налицо все необходимые технологические атрибуты этого распространенного в машиностроении процесса.

Режущим инструментом – притиром служит нижняя полка поршневой канавки, как и положено для таких инструментов, как притир, выполненная из металла с меньшей твердостью (чаще всего это сплавы алюминия), чем обрабатываемый материал (чугунные или стальные гильзы цилиндров или поршневые кольца). Например, закаленные стальные детали, как правило, притираются чугунными притирами, шаржированные абразивным или алмазным порошками.

Абразивным материалом в данном случае служат твердые частицы отколовшегося кокса, металлических отходов износа деталей цилиндропоршневой группы (в основном, гильзы цилиндра и самого кольца, в том числе и частиц хрома с твердого покрытия рабочей поверхности кольца) и двигателя. На единственном рабочем такте «впуск», когда при ходе поршня в нижнее положение компрессионное кольцо смещается к верхней полке поршневой канавки, между нижней полкой канавки и нижним торцом кольца образуется зазор, в который под большим давлением попадает своеобразная «полировальная абразивная суспензия». Для осуществления процесса притирания также нужны скорость резания и сила резания.

Сила резания, т. е. осевая сила прижима нижнего торца кольца к нижней полке поршневой канавки, здесь меняется значительно, от максимальной силы в районе ВМТ, например, для двигателя ВАЗ она равна 5,5 кН, а для дизеля КАМАЗ – порядка18 кН, и минимальной в районе НМТ.

Скорость резания, в этом случае зависит от частоты «сжатия – разжима» кольца (она в два раза больше скорости вращения коленчатого вала двигателя) и от амплитуды, т.е. расстояния, на которое смещается кольцо относительно нижней полки поршневой канавки. В свою очередь, амплитуда колебаний кольца определяется разницей диаметров нижней и верхней частей цилиндра. Практически она измеряется сотыми и десятыми долями миллиметра, в зависимости от величины диаметров цилиндров. К сожалению, эта разница, в той или иной степени характерна для всех двигателей, к тому же в процессе эксплуатации двигателей достигает значительных размеров, зачастую существенно превышая допустимые нормы.

Все это приводит к значительному износу нижнего торца компрессионного кольца, причем величина этого износа иногда соизмерима с износом рабочей поверхности кольца, и даже превышает его. Например, на «хорошо» поработавшем первом компрессионном кольце бензинового двигателя ЗМЗ износ рабочей поверхности составил – 0,43 мм, нижнего торца – 0,38 мм, верхнего торца – всего 0,03 мм. Чтобы объяснить механику активного износа нижнего торца компрессионного кольца, необходимо познать «физику» процесса его «обработки».

Обработанная таким образом поверхность имеет высочайший класс шероховатости (выше 10-го) и не имеет явно выраженных обработочных рисок, очевидно потому, что, очень незначительна величина перемещения торца кольца относительно полки поршневой канавки, слишком микроскопичны попадающиеся в зону «резания» твердые частицы, прошедшие масляный фильтр, и, конечно, само масло, способствующее «полированию». То есть, в процессе эксплуатации двигателя смазочно-охлаждающее масло постепенно (в начальный период приработки деталей более активно) трансформируется в полировальную пасту, полученную естественным образом.

Незначительные расстояния относительных перемещений «обрабатываемой» поверхности и нижней полки поршневой канавки и очень большая их частота могут убедить в том, что идет «процесс резания», то есть износ нижнего торца кольца. Причем верхний торец «обрабатывается» на порядок меньше нижнего.

Вполне очевидно, что процессы «трения – износа» рабочей поверхности кольца и его нижнего торца различны хотя бы потому, что при шабрении гильзы цилиндра кольцо, находясь в постоянном контакте со стенкой цилиндра, перемещается с огромными скоростями на относительно большие расстояния. Например, при ходе поршня 80 мм и скорости вращения коленчатого вала 3000 мин

, скорость перемещения поршня (считай скорость шабрения гильзы цилиндра) составляет 6 м/с. В то время, как скорость перемещения нижнего торца кольца (сжатие в НМТ и разжим в ВМТ), при разнице диаметров внизу гильзы цилиндра и вверху 0,2 мм (что допустимо для большинства двигателей), составляет 0,02 м/с, т.е. в 300 раз меньше, чем при шабрении. Но зато сила прижима (сила резания) значительно больше для нижнего торца кольца, чем для его рабочей поверхности.

Износ нижнего торца компрессионных колец приводит к увеличению зазора между верхним торцом кольца и верхней полкой поршневой канавки, способствующего прорыву сжимаемого воздуха, топливовоздушной смеси и рабочих газов из цилиндра в поршневую канавку и далее в картер двигателя. Кроме того, копоть и сажа, снимаемые со стенки цилиндра верхним торцом кольца, через повышенный зазор попадают в придонную полость поршневой канавки, постепенно накапливаясь на свободных поверхностях поршневого кольца и канавки. Под действием высоких давлений и температур происходит коксование поршневых колец и поршневой канавки, изменяющее физические параметры поршневого кольца, в итоге приводящее к его заклиниванию в поршневой канавке и возможной поломке двигателя.

Очевидно, можно констатировать факт существования общей для всех типов поршневых машин закономерности износа уплотнительных колец, основанной как на «механике», так и «газодинамике» процесса, которые следует учитывать разработчикам при проектировании новых двигателей и компрессоров, соответствующих им новых поршневых уплотнительных устройств.

§5. Конструкции компрессионных поршневых колец

До последнего времени при проектировании поршневых уплотнений для новых изделий разработчики особенно не утруждали себя поиском принципиально новых схем и конструкций, в какой-то мере, не видя в этой простой конструкции нерешенных проблем. Тем более, что под руками у них имелись ГОСТы, ОСТы, отраслевые нормали и прочие документы имеющихся наработок. В качестве вспомогательной литературы использовали и используют до сих пор учебную литературу по двигателям внутреннего сгорания и фундаментальный двухтомник К. Энглиша 1962 года [8]. Наверное, не очень правильно, когда рекомендации, доводы и выводы, приводимые в учебной и научной литературе, принимаются специалистами, как аксиомы, не требующие принципиальных изменений. Очевидно, стоит обратить внимание пользователей на спорность некоторых положений, использование которых не способствуют повышению качества уплотнения между поршнем и цилиндром, существенно влияющего на эффективность поршневой машины.

Проведенные исследования показали, что рассмотрение в поршневом уплотнении только одного поршневого кольца, его конструкции и физико-механических характеристик материала, из которого оно изготавливается не вполне корректно. Дело в том, что, находясь под воздействием высоких давлений и температур рабочих газов, прорывающихся в поршневую канавку, компрессионное кольцо может потерять свою работоспособность, если его геометрические параметры рассчитаны без учета газодинамики.

«Современные рабочие кольца, как правило, имеют высоту кольца меньше, чем его толщину (толщина – это разница внешнего и внутреннего диаметров кольца) в 1,5…2,0 раза, поэтому площадь верхнего торца компрессионного кольца больше его внутренней вертикальной поверхности.
<< 1 2 3 4 5 >>
На страницу:
4 из 5