Оказалось, что за все эти явления отвечают особые структурные элементы коры головного мозга – так называемые «зеркальные нейроны», получившие свое название как раз за их способность дублировать внешние и внутренние состояния субъекта, находящегося в зрительном поле наблюдателя.
Впервые же эти нейроны еще в начале 1990-х годов обнаружили итальянские ученые, занимавшиеся исследованием одной из зон головного мозга макак, который отвечает за моторику. Нейробиологи ее знают как область «Ф5». В человеческом мозге ей соответствует зона Брока в левом полушарии, которая, как сегодня считают специалисты, связана с функционирование речевого аппарата и самой речью.
Так вот, эти нейроны проявляли активность не только тогда, когда мартышка сама выполняла то или иное действие, но и тогда, когда эти же действия проделывал экспериментатор, а обезьяна за ним наблюдала.
Если же предметы, с которыми требовалось совершить какую-то манипуляцию, просто лежали на земле и никто к ним не прикасался, нейроны в области «Ф5» ничем себя не проявляли. То есть зеркальные нейроны реагировали только тогда, когда с объектами производили определенные действия. И все эти действия они мысленно проецировали в своих структурах, словно в зеркале. Поэтому их и назвали «зеркальными нейронами».
Причем эти нейроны именно «повторяли» наблюдаемое действие, а не просто активизировались при его наблюдении. И это со всей очевидностью подтвердилось тогда, когда те же действия обезьяны проделали сами. В этой ситуации нейроны, проявившие активность, были теми же самыми, и характер выдаваемых ими сигналов.
Но в то же время зеркальные нейроны проявляли отчетливую избирательность. Заключалась она в том, что каждая их группа реагировала на некие конкретные действия, но оставалась «безмолвной» в отношении тех, которые чем-то отличались, причем даже совсем незначительно.
При таких «параллелях» в поведении «зеркальных» нейронов создавалось впечатление, что при их посредстве мозг обезьян проецировал на себя внешние проявления мозга экспериментатора, например, в физических действиях.
Скорее всего, подобные явления происходят и в мозгу собаки, когда она проявляет агрессивную реакцию по отношению к человеку, который лишь только задумал сделать ей нечто плохое, например, ударить палкой.
Объясняют этот феномен обычно тем, что собака видит те действия, которые у человека сначала были смоделированы в мозге, а затем едва заметно и абсолютно неосознанно проявились в изменившемся положении всех частей тела – ног, рук, корпуса.
И опять же: как собака осознает, что эти едва уловимые и практически незаметные изменения в общей структуре тела человека предвещают ей угрозу? Ученые считают, что, скорее всего, собачьи нейроны, увидев едва приметные угрожающие движения со стороны человека, мысленно моделируют свои действия, когда она сама нападает на жертву или на своего врага. То есть получается, что мозг собаки в каком-то смысле «читает» мысли человека.
В связи с открытием этой группы нейронов у исследователей появилось и объяснение одного довольно любопытного явления в этологии бабуинов. Дело в том, что самки этих обезьян нередко остаются безразличными к крикам своих заблудившихся в чаще леса, детенышей. В свете теории «зеркальных» нейронов объяснить это можно тем, что бабуины, не видя детенышей, не могут экстраполировать свое поведение в данной ситуации на поведение своих малышей. То есть они не понимают, что значат их крики…
Но если «читать» мозг могут обезьяны и собаки, то люди уж точно обладают такой способностью. По крайней мере, так считают специалисты.
Однако как этот процесс происходит, ученые пока ответить не могут. На эту проблему существует несколько точек зрения. Одни исследователи считают, что человеческий мозг, запоминая различные жизненные ситуации, обобщает их и впоследствии из этого накопленного ситуативного материала создает своего рода «модели» того, как будет действовать человек в тех или иных обстоятельствах. Иначе говоря, чего можно ждать от другого человека в соответствующей обстановке.
Согласно другой гипотезе, в этом «чтении» чужого мозга лежит довольно простой механизм: один человек ставит себя на место другого и мысленно моделирует то, что в данной ситуации должен делать или чувствовать этот другой.
Но предполагать можно многое, в частности, с «зеркальными» нейронами у человека. Вопрос только в том, есть ли они у людей? Оказалось, да, есть. И обнаружены они были с помощью методов прямой визуализации мозга в области Брока, которая, как известно, связана с речью. Она же соответствует зоне «Ф5» у обезьян.
Эти открытия позволили итальянским ученым предположить, что зеркальные нейроны и были тем главным фактором, который способствовал появлению речи у человека.
Возможно, на первом этапе коммуникационых отношений главная роль принадлежала жестам, как, например, у глухонемых. Наблюдая их у соплеменников, первобытный человек мысленно воспроизводил эти жесты с помощью зеркальных нейронов. Но иногда мысленные действия становились реальными: рука поднималась или опускалась, голова наклонялась вправо или влево. То есть происходило примитивное непроизвольное общение, которое давало возможность древнему человеку увидеть, что его поняли соседи по племени. А еще спустя какое-то время из таких жестов родилась речь.
Эти гипотетические предположения позволили итальянским ученым в своих теоретических рассуждениях пойти еще дальше. Они выдвинули версию, что зеркальные нейроны могут объяснить не только такие явления, как сочувствие или сострадание к другому человеку, но и «чтение» его чувств.
Изучение зеркальных нейронов может привести и к серьезным практическим результатам. Например, понять природу аутизма, когда человек лишен возможности идентифицировать себя с другими людьми, и ориентируется только на собственные переживания.
Специалисты считают, что у страдающих аутизмом недостает зеркальных нейронов, и поэтому они не могут моделировать умственные процессы других. Поэтому та модель поведения, которая превалирует в окружающем мире, для них недоступна.
Эту гипотезу подтвердили электроэнцефалограммы, взятые в ходе исследования десяти мужчин, страдающих разной степенью аутизма. Оказалось, что их зеркальные нейроны либо совсем «молчали», либо проявляли активность тогда, когда больные сами совершали какие-то действия.
ХРОНОМЕТР ОРГАНИЗМА
Людей не удивить теми периодическими явлениями, к которым они привыкли с самого детства. Год за годом одно и то же: вслед за утром наступает день, а за сумерками – ночь. Весна тянет за собой увеличение продолжительности дня, а осенью – его убывание. Да и в течение дня, хоть и незначительно, но все же меняются и температура воздуха, и атмосферное давление, и еще десятки параметров, которые даже при современных средствах контроля очень сложно проследить.
А чтобы выжить в такой неустойчивой среде, любой организм должен был каким-то образом подстроиться под эти внешние перемены. Вот практически у всех живых существ в процессе эволюции и появились соответствующие реакции на этот неустойчивый внешний фон. Одной из таких адаптаций и стали собственные биологические часы, или биологические ритмы.
В настоящее время у человека известно более 300 различных функций и процессов, которые находятся под контролем биологических часов. Так, в течение суток частота пульса подчиняется определенной периодике: к 9–10 часам она увеличивается, достигая к этому времени обычной для человека нормы, а затем к 13–14 часам уменьшается. С 16 до 18 часов пульс опять учащается, а в 22–23 часа – снова замедляется.
То же можно сказать и об артериальном давлении, максимальное значение которого приходится на 12–13 и 18 часов, а самые его низкие показатели бывают в утренние часы и в полночь, точнее, в 23–24 часа.
Оказалось, что и биохимические параметры крови также строго «ориентируются» на ход своих «внутренних часов». Например, максимальное содержание лейкоцитов наблюдается в 2, в 9, в 14, в 18 и 22 часа.
В соответствии с внутренними часами меняется и температура нашего тела: так, минимальна она рано утром и максимальна – во второй половине дня, точнее, в 18 часов. Причем разница между минимальными и максимальными показателями достигает одного градуса.
Кстати, при вирусных инфекциях температура тела чаще всего повышается в вечерние часы, а при бактериальных – в утренние.
Суточные вариации ярко проявляются в токсичности лекарственных препаратов и эффектах облучения, применяемого для поражения делящихся опухолевых клеток. В экспериментах с животными было установлено, что доза, при которой в одно время суток выживает до 80 процентов особей, в другое время практически для всех животных становится смертельной.
Французский спелеолог Мишель Сифр с целью изучения биоритмов человека провел более 200 суток в пещере, в полном одиночестве и темноте
Биоритмы человека исследуют в так называемых условиях «изоляции от времени», в которых испытуемый лишен какой-либо информации о времени извне. За последние несколько десятилетий проведено немало таких экспериментов. И сделан ряд любопытных выводов.
Французский спелеолог М. Сифр провел более 200 суток в пещере – в полном одиночестве и темноте. Несмотря на экстремальные условия и сильное эмоциональное напряжение, все это время у него сохранялся четкий ритм температуры тела, правда, его период был длиннее 24 часов. Аналогичные эксперименты были проведены в Германии. Испытуемые находились в бункере в условиях максимального комфорта. Но и в этом случае период ритма был больше 24 часов.
Следует отметить, что результаты 147 экспериментов показали, что независимо от степени физической нагрузки и особенностей питания температурный ритм даже в условиях изоляции в среднем равняется 25 часам.
Кстати, одна из характеристик внутреннего хронометра человека – его гибкость. Человек может сам запускать или же останавливать его, может даже вообще не обращать на него внимания. То есть биологические часы могут работать как вне сознания, так и под его контролем. Но точность его невысока: от 5 до 60 %.
Что же касается места пребывания циркадных часов, то ученым уже давно известно, что они находятся в двух кластерах по 10 000 нервных клеток, расположенных в гипоталамусе.
Опыты на животных показали, что именно эти центры, называемые супрахиазматическим ядром (СХЯ), управляют суточными изменениями кровяного давления, температуры тела, уровнем активности и внимания.
Ученые установили также, что специальные клетки в сетчатке глаза передают в СХЯ информацию об уровне освещенности. Но они, тем не менее, работают совершенно независимо от палочек и колбочек…
Оказывается, несколько десятилетий назад неврологи предположили, что в головном мозге существуют особые нейроны, которые контролируют течение времени и принимают участие в распределении воспоминаний в соответствии с их хронологической последовательностью.
Кроме того, согласно выдвинутой версии, эти нейроны должны были определять порядок выполнения действий человеком в будущем. Сама по себе эта гипотеза была достаточно привлекательна, так как достаточно хорошо вписывалась в существовавшее тогда представление о строении головного мозга. Но это была всего лишь гипотеза, которой, чтобы стать теорией, не хватало доказательств.
Их-то и получили ученые из Массачусетского технологического института, обнаружившие в мозгу приматов группу нейронов, которые контролируют временной поток.
Фактически любое действие или событие, которое человек совершил или о котором ему известно, получает особую «метку», фиксирующую тот момент, когда действие или событие было осуществлено.
В дальнейшем, когда возникает необходимость вспомнить ту или иную жизненную ситуацию, человек ориентируется на конкретную метку, которая как раз этот момент и воссоздает в памяти.
Для доказательства своей правоты ученые воспользовались двумя обезьянами, которые были обучены сидеть неподвижно и смотреть в одну точку до тех пор, пока не прозвучит особый сигнал, разрешающий им направлять взгляд в любую сторону.
Исследуя реакции головного мозга животных, ученые обнаружили в его коре такие зоны, в которых нейроны начинали отвечать на сигнал через определенное время: через 100 миллисекунд, 110 миллисекунд и так далее.
Эти «нейроны времени» находятся в префронтальной доле коры головного мозга – в так называемом полосатом теле (стриатуме), в котором сосредоточены структуры, отвечающие за способность к обучению, движению и умственному контролю.
Но так как почти все специализированные группы нейронов в человеческом мозгу многократно продублированы, ученые уверены, что участков, в которых сконцентрированы «нейроны времени», может оказаться гораздо больше.
А нейробиолог Питер Стрик из Питтсбургского университета даже посчитал, что обнаружен новый орган чувств – «орган времени».
«Мы имеем сенсорные рецепторы света, запаха, звука, прикосновения и вкуса. Однако рецептора времени у человека нет. Способность ощущать течение времени и ориентироваться в нем оказалась заложена непосредственно в наш мозг», – заявил ученый.
В ходе дальнейших исследований нейронов, контролирующих время, был установлен любопытный факт. Оказалось, что если на абсолютно здоровые «нейроны времени» воздействовать дофамином и серотонином, то это практически не оказывает влияния на их деятельность, но существенно улучшает работу нейронов, пораженных болезнью Паркинсона.