Шунгитовый углерод обладает аморфной структурой, устойчивой к графитации, характеризуется высокой реакционной способностью в термических процессах, высокими сорбционными и каталитическими свойствами, электропроводимостью и химической стойкостью. Необычна структура шунгита. Порода представляет собой композит, матрицу которого образует углерод. В углеродной матрице равномерно распределены высокодисперсные (менее 10 мкм) частицы силикатов. Контактная поверхность силикатов с углеродом более 10 м
/г.
Помимо уникальных фуллеренов (расскажу о них чуть позднее), шунгит содержит элементы практически всей таблицы Менделеева. Особенность этой горной породы заключается в ее избирательном действии. При взаимодействии с человеком шунгит поглощает и убивает все ненужное, а также «добавляет» и восстанавливает элементы, в которых человек нуждается. В основе этого явления лежат ионообменные свойства шунгита, позволяющие избирательно извлекать определенные загрязнители из организма. Кроме того, шунгиты умеют еще и подпитывать нас необходимыми макро-и микроэлементами, и тоже избирательно: из множества элементов, содержащихся в минералах, организм выбирает именно то, что ему нужно. Таким образом, организм человека постепенно восстанавливает свой минеральный баланс, что помогает излечить многие хронические болезни и восстановить энергетический статус.
Интересно, что впервые о воздействии минералов на живые организмы ученые заговорили после наблюдения за животными. Сибирский геолог Драверт в 1922 г. ввел в науку такое понятие, как «литофагия» – поедание камней. Он заметил, что время от времени волки, олени и лоси лижут камни. Раньше считалось, что таким образом животные находят в природе соль и компенсируют дефицит натрия в рационе. Потом оказалось, что камни, которые они «поедают», зачастую никакого отношения к соли не имеют. В ходе более детального исследования и были обнаружены те самые ионообменные процессы между камнями и живым организмом, который в результате освобождается от ненужных элементов и получает недостающие. Химический состав шунгитов:
SiO
TiO
Al
O
FeO MgO CaO Na
OK
O S C H
O
.
57,0 0,2 4,0 2,5 1,2 0,3 0,2 1,5 1,2 29,0 4,2
H
O
. – входит в состав хлорита, слюд.
Свойства шунгита:
1) плотность – 2,1–2,4 г/см
;
2) пористость – до 5 %;
3) прочность на сжатие – 1000–1200 ктс/см
;
4) электропроводность – 1500 сим/м;
5) коэффициент теплопроводности – 5 Вт/м
оК;
6) развитая внутренняя поверхность – до 20 м
/г;
7) адсорбционная активность:
– по фенолу – 14 мг/г;
– по термолизным смолам – 20 мг/г;
– по нефтепродуктам – более 40 мг/г.
Адсорбционно активен по отношению к бактериальным клеткам, фагам, патогенным сапрофитам и др. Частицы шунгита, независимо от размеров, обладают биполярными свойствами, что и объясняет высокий уровень адгезии и способность шунгита смешиваться со всеми без исключения веществами. В конце ХХ в. ученые отчасти объяснили причины целебного действия шунгита. Как выяснилось, минерал в основном состоит из углерода, значительная часть которого представлена молекулами сферической формы – фуллеренами.
Фуллерены – особая форма углерода, вначале открытая в научных лабораториях при попытке моделировать космические процессы, а позднее обнаруженная в земной коре. Открытие оказалось важным: ученые, занятые разработкой этой темы, получили в 1997 г. Нобелевскую премию. Чтобы понять природу чудесного действия шунгита, необходимо немного более подробно рассмотреть свойства фуллеренов. До недавнего времени считалось, что углерод имеет только три формы существования – алмаз, графит и карбин (причем карбин получается исключительно в лабораторных условиях и, строго говоря, считаться природным минералом не может). Эти вещества отличаются своим строением. Каждый атом углерода в структуре алмаза расположен в центре тетраэдра, вершинами которого служат четыре ближайших атома. Такая структура определяет свойства алмаза как самого твердого известного на Земле вещества.
Атомы углерода в кристаллической структуре графита формируют шестиугольные кольца, образующие в свою очередь прочную и стабильную сетку, похожую на пчелиные соты. Сетки располагаются друг над другом слоями, слабо связанными между собой. Такая структура определяет специфические свойства графита: низкую твердость и способность легко расслаиваться на мельчайшие чешуйки. А вот молекула фуллерена представляет сферическую поверхность, образованную из шестиугольников и пятиугольников. Природой задана четкая последовательность этого соединения – каждый шестиугольник граничит с тремя шестиугольниками и тремя пятиугольниками, а каждый пятиугольник граничит только с шестиугольниками. Атомы углерода, образующие сферу, связаны между собой сильной связью.
Благодаря своему шарообразному строению фуллерены оказались идеальной смазкой. Они катаются, словно шарики размером с молекулу, между трущимися поверхностями. Комбинируя внутри углеродных шаров разные атомы и молекулы, можно создавать самые фантастические материалы. Фуллерены могут использоваться в медицине, ракетном строительстве, в военных целях, электронике, машинном производстве, в производстве технической продукции, компьютеров и другом, и во всех случаях рабочие параметры оборудования значительно улучшаются, качество повышается, технологии становятся более эффективными и простыми. Например, американские исследователи разработали технологию, позволяющую наносить на любую поверхность тончайшие элементы солнечных батарей – они представляют собой многослойную полимерную пленку, содержащую все те же фуллерены. Такие элементы обладают пока примерно в 4 раза более низким коэффициентом полезного действия, чем традиционные батареи на основе кремния, но они значительно проще и дешевле в производстве. Возможно, уже в ближайшем будущем промышленность начнет выпускать солнечные батареи рулонами – как обои.
А в одном из университетов Швеции в ходе опытов с фуллеренами неожиданно для самих ученых был получен слоеный материал, напоминающий фольгу, проложенную тонкими слоями бумаги. Прозрачный и гибкий материал оказался магнитом и сохранял свои свойства даже при температуре свыше +200 ?С. Его вполне возможно использовать для создания плат компьютерной памяти с помощью записи лазером. Благодаря этому достигается очень высокая плотность носителя информации. Российские ученые Ростовского госуниверситета полагают, что, возможно, углеродные сверхминиатюрные процессоры можно будет совмещать с человеческим организмом, например подключать их к нервной системе, чтобы заучивать иностранные языки или держать в памяти Большую британскую энциклопедию.
Большие надежды связаны с применением фуллеренов в медицине. Почти идеальная сферическая структура молекулы фуллерена и микроскопический размер (диаметр 0,7 нм) позволяют ученым рассчитывать на то, что эти молекулы смогут создать механическое препятствие для проникновения вирусов в клетки зараженного организма. Обсуждается также и идея создания противораковых препаратов на основе водорастворимых соединений фуллеренов с внедренными внутрь радиоактивными изотопами. Введение подобного лекарства в ткань позволит избирательно воздействовать на пораженные опухолью клетки, препятствуя их дальнейшему размножению.
Пока основное препятствие на пути разработок связано с нерастворимостью молекул фуллеренов в воде, затрудняющей их прямое введение в организм. Другое препятствие – высокая цена искусственных изотопов. Стоимость фуллеренов высшего сорта составляет около 900 долларов США за грамм, более низкого качества – около 40 долларов за грамм в зависимости от степени чистоты фуллеренов. Эти «недостатки» искусственных фуллеренов искупают фуллерены природные, обнаруженные в земной коре после открытия уникального вещества в научных лабораториях.
Впервые о земном существовании уникального вещества научный мир узнал после того, как один из бывших советских ученых исследовал в Аризонском университете (США) образцы карельских шунгитов и, к удивлению, обнаружил там углеродные глобулы с фуллеренами. С тех пор и начался интенсивный поиск других пород, содержащих фуллерены, возникли вопросы об их происхождении на Земле.
Позднее земные фуллерены были найдены в Канаде, Австралии и Мексике – причем в каждой из этих стран они обнаруживались на местах падения метеоритов. При этом некоторые фуллерены были заполнены: внутри оболочек находились атомы гелия. Странным оказался тот факт, что фуллерены хранили не гелий-4 – изотоп, который обычно присутствует в земных породах, – а редкий для Земли изотоп гелий-3.
По мнению ученых, такие фуллерены могли образоваться только в космических условиях, в так называемых углеродных звездах или в ближайшем их окружении. Удалось определить время появления исследованных фуллеренов на Земле. Кратер от падения канадского метеорита образовался около 2 миллиардов лет назад, в архейскую эру, когда Земля еще была безжизненна. Возраст других фуллеренов оценивается в 250 миллионов лет, т. е. на границе отложений пермского и триасового периодов. Именно тогда в Землю врезался гигантский астероид, вызвавший катастрофические разрушения.
Что же касается шунгитовых пород, то логично предположить, что именно наличием фуллеренов в шунгите стали объяснять целебное действие открытых в 1714 г. Марциальных вод и Царевниного источника. Возникло предположение, что к молекулам фуллеренов в шунгитах присоединены органические радикалы, позволяющие фуллеренам образовывать водные растворы, над созданием которых пока бьются ученые.
На настоящий момент область применения шунгитов широка. Например, шунгитовый сорбент используют для очистки воды в колодцах. Предназначен он для загрузки в колодцы с целью очищения воды от бактериальных загрязнений, нитратов, нефтепродуктов, металлов и придания воде свойств, соответствующих требованиям санитарных правил к питьевой воде. В качестве сорбента для очистки воды в колодцах используется уникальный природный шунгит из Карелии. Шунгит обладает способностью очищать воду практически ото всех органических веществ (в том числе нефтепродуктов и пестицидов), от многих металлов и неметаллов, от бактерий и микроорганизмов.
Самая чистая и мягкая на планете вода Онежского озера – свидетельство тысячелетнего взаимодействия с шунгитом, выстилающим его дно. Всемирно известные источники Марциальные воды и Три Ивана своими чудодейственными свойствами обязаны фильтрации подземных вод сквозь шунгитовые породы.
Шунгиты с содержанием углерода около 30 % имеют суммарную пористость 5 – 10 %, значительную внутреннюю поверхность (в диапазоне 10–30 м
/г), насыпную плотность около 1,1 г/см
, обладают высокой механической прочностью, электропроводностью, химической стойкостью, каталитическими и бактерицидными свойствами. Эти свойства делают шунгиты привлекательным и перспективным материалом в фильтрационной и адсорбционной очистке сточных вод от органических и неорганических веществ, для электровосстановления и электроосаждения ионов тяжелых металлов. Шунгиты успешно адсорбируют целый ряд органических веществ различных классов: фенолы, жирные высокомолекулярные кислоты, спирты, вещества древесных и торфяных гидролизатов, водорастворимые смолы гидролиза, гуминовые вещества и другие, а также ряд газов.
Шунгит можно использовать в качестве сорбента для очистки вод от различных промышленных загрязнений, а также бытовых стоков, например с помощью отстойников с засыпкой шунгита в качестве фильтров, различного типа пропускных систем как на начальных стадиях очистки, так и на конечных. Перспективно применение шунгитовых фильтров взамен песка в процессе водоочистки. При прохождении воды через шунгитовый фильтр значительно снижается ее цветность, практически полностью убирается микрофлора, в зависимости от скорости подачи воды через фильтр достигается снижение коли-индекса до нуля.
Шунгит взаимодействует с водой не только как фильтрующий материал и адсорбент. Он обладает каталитическими и катионообменными свойствами. Благодаря каталитическим свойствам шунгит способен длительное время очищать воду от разного типа органических веществ (хлорорганических, ароматических углеводородов, алифатических спиртов и др.), разрушая органические вещества до элементарных оксидов (CO