– Да я в мировые звезды и не рвусь. – Ответил юноша. – Меня устраивают мелочи. Сделаю пару уточнений!
Звали этого молодого человека Макс Планк. В 1947 году «Нью-Йорк Таймс» назвала его одним из самых величайших гигантов мысли в истории цивилизации наряду с Эйнштейном и Архимедом. На надгробии этого человека вместо дат рождения и смерти выбито число, которое в физике называется «постоянная Планка». Это главная константа квантового мира…
Кстати, став физиком, Планк играть на рояле не перестал, и порой они с Эйнштейном, который приносил с собой скрипку, зажигали на пару. Думаю, музыка много потеряла…
Сам Планк был человеком трагической судьбы. Две его дочери умерли молодыми в родах. Старший сын пал на Первой мировой войне в знаменитой Верденской битве, известной как «Верденская мясорубка», где погибло тогда более миллиона человек. Младший сын был казнен в январе 1945 года за участие в покушении на Гитлера, которое организовал полковник фон Штауфенберг. В конце войны дом Планка был разбомблен, и старый уже к тому времени Макс Планк пошел со своей женой, оставшись без всего в этой жизни, куда глаза глядят.
А главной научной трагедией Планка было то, что этот человек, положивший начало квантовой механике и придумавший само слово «квант», так и не поверил в существование квантов. Он-то полагал, что его формулы – это всего лишь паллиатив, костыль, временное вспомогательное решение проблемы, пока физика не придумает что-то посущественнее и пореальнее его квантов. Но все дело в том, что он сам и был – физика! Планк стоял в самом ее передовом ряду и не было никого первее.
Так что же за проблемы возникли у физики в конце XIX века? Какая малая дырочка оказалась столь влиятельной, что разрушила плотину, через которую в физику хлынул целый новый мир, ранее не замечаемый?
Дырочек было две. Первая – несоответствие фактического положения Меркурия его теоретическому положению, просчитанному по ньютоновской механике. Вторая закавыка – та самая ультрафиолетовая катастрофа, которая заключалась в том, что как-то неправильно излучало абсолютно черное тело.
Что такое абсолютно черное тело?
Еще в 1860-х годах один из учителей Планка, Густав Кирхгоф, придумал модельный объект для мысленных экспериментов по термодинамике – абсолютно черное тело (АЧТ). По определению, АЧТ – это такое тело, которое поглощает абсолютно все излучение, падающее на него, и ничего не отражает. Кирхгоф показал, что АЧТ – это еще и лучший излучатель из всех возможных. Ведь тот факт, что абсолютно черное тело поглощает все излучение, говорит о том, что оно нагревается, а значит, излучает тепло (и свет при сильном нагреве)!
Самой распространенной моделью черного тела, которую приводят в пример школьникам, является сфера с внутренней зеркальной или черно-сажевой поверхностью и дырочкой, как на рисунке. Луч света, залетев в дырочку, попадает в ловушку и поглощается сажей или начинает бесконечно отражаться от стенок, потому что вероятность вырваться обратно у него очень мала.
Модель абсолютно черного тела. АЧТ – это не вся сфера, а только дырочка, в которую попадает свет и оттуда уже не вылетает.
Рис. 5
Естественно, как любой нагретый объект, черное тело излучает в широком диапазоне длин волн, причем, по мере нагрева пик излучения смещается в коротковолновую (высокочастотную) область. Ближайший аналог АЧТ – нагретый до красноты или белого каления кусок металла: чем выше температура куска металла, тем белее его свечение.
Так вот, расчеты, проведенные в соответствии с классической физикой, давали очень хорошее совпадение с экспериментом в области длинноволнового излучения (для не сильно нагретых тел), но для тел, нагретых сильно, то есть излучающих в области коротковолновой, классическая физика давала абсурдный результат – тело должно было излучать бесконечно большую энергию!
Это было крайне неприятно – увидеть такое в расчетах!
Зависимость энергии, излучаемой АЧТ, от длины излучаемых волн и температуры его нагрева. Крайняя правая линия, улетающая в бесконечность, – результат теоретического предсказания классической теории для тела, нагретого до температуры 5000 К. Прочие линии – результат эксперимента.
Рис. 6
Эту нелепицу устранил Макс Планк, сделав допущение, что энергия из АЧТ не льется сплошным волновым потоком, а излучается «поштучно», порционно – квантами. Квант есть маленькая неделимая порция. Причем энергия кванта пропорциональна его частоте, а коэффициентом пропорциональности служит некая величина, которую потом назвали «постоянной Планка».
Оформив это свое предположение математически, Планк внес поправки в формулы, и они дали прекрасное совпадение с экспериментом.
Сам Планк в свое предположение о квантах не верил. Ему казалось, что когда-нибудь его вынужденное допущение будет устранено. Однажды Планк гулял со своим сыном-подростком (которого через много лет казнил Гитлер) и на вопрос мальчика, чем отец занимается, ответил, что он или сделал открытие на уровне Исаака Ньютона, или занимается какой-то странной нелепицей.
В общем, Макс Планк, стоявший у истоков квантовой физики, человек, с которого кантовая физика началась! – в кванты не верил.
Вторым человеком, заложившим краеугольный камень в квантовую физику, был Эйнштейн со своей работой по фотоэффекту. И ему квантовая физика жутко не нравилась! Но он, как и Планк, был вынужден строить ее здание – сама природа заставила.
В двух словах напомню историю с фотоэффектом. Дело было так.
В XIX веке открыли явление фотоэффекта – при облучении металла светом из металла начинают выбиваться электроны. Картинка ниже наверняка покажется вам знакомой, и немудрено – вы видели ее на уроках физики.
Световой поток вышибает электроны из катода лампы, и под действием электрического поля они устремляются к аноду, замыкая цепь.
Рис. 7
Как рассуждали представители классической физики эпохи стимпанка? Ну, если свет – это волна, то поливая световым потоком металл, как из шланга, мы постепенно накачиваем электроны энергией, и когда электрон накопит энергию, достаточную для того, чтобы оторваться от ядра атома, он вылетит. Стало быть, чем интенсивнее мы «поливаем» электроны, тем больше будет фотоэффект. А от цвета света, то есть от частоты излучения, эффект зависеть не должен. Однако результат эксперимента оказался полностью противоположным. Оказалось, энергия вылетающих электронов связана не с интенсивностью света (ярче, темнее), а почему-то с его частотой. И при достижении какой-то критически низкой частоты, электроны переставали выбиваться даже при высочайшей интенсивности светового потока.
Почему?
Эйнштейн, занявшийся этой проблемой, закрыл вопрос со свойственной ему гениальностью. Он, взяв на вооружение идею Планка о том, что излучение и поглощение энергии происходит порциями, квантами энергии, заявил:
– Ребят! Свет – не волна! То, как он себя ведет при выбивании электронов, говорит о том, что так вести себя могут только частицы. И чем они энергичнее, тем больше энергия выбитого электрона. А энергия световых частиц зависит от их частоты. То есть влияет не количество частиц (интенсивность света), а их качество (частота). Слабенькими частицами хоть уполивайся, у них недостаточно энергии для того, чтобы вырвать электрон из металла. А вот даже одной энергичной частицы достаточно, чтобы вырвать один электрон, то есть реденького потока энергичных частиц света вполне хватит для начала фотоэффекта. Бинго, друзья!
Частицы эти позже назвали фотонами.
И во всем этом была двойная странность. Во-первых, о каких частицах речь, если свет – это волна, что доказано опытным путем!? Во-вторых, если Эйнштейн говорит о частицах, то, черт возьми, какая у частиц может быть частота? Ведь частица – это объект, а не процесс!
Молекула воды – объект. А волны на море – синхронизированный процесс колебания молекул воды – вверх-вниз, вверх-вниз…
Пружина – объект. Колебания пружины – процесс…
По-моему, тут все ясно. Есть же разница между ногами и ходьбой, верно? Ну, какая может быть частота (длина волны) у табуретки?
Однако Эйнштейн был прав, что и подтвердили бесконечные опыты с фотоэффектом. Десять лет некто Роберт Милликен проводил опыты с фотоэффектом, пуляя кванты света на катод. И он был такой не один. После чего физический мир согласился с правотой Эйнштейна. А Милликен, который на основании этих опытов вычислил постоянную Планка и написал: «Я потратил десять лет своей жизни на проверку этого эйнштейновского уравнения 1905 г. и, вопреки всем своим ожиданиям, был вынужден в 1915 г. безоговорочно признать, что его уравнение экспериментально подтверждено, несмотря на всю его несуразность. Ведь это противоречит всему, что мы знаем…»[6 - М. Планк. Революция в микромире. Квантовая теория. – М.: ДеАгостини, 2012.]
Таким образом квантовая природа света была доказана: свет – это частицы. Что было доказано с той же неопровержимостью, с которой ранее в опытах с интерференцией было доказано, что свет – это волна.
Свет оказался и волной, и частицей. И объектом, и процессом одновременно.
И тогда физики махнули рукой и решили: а пускай! Пусть будет противоречие. Назовем это корпускулярно-волновым дуализмом. Как только непонятную вещь как-нибудь называешь, она сразу как бы становится понятнее… И будем отныне говорить так: свет – это материальный объект, который можно описать и как частицу, и как волну в зависимости от способа описания и приборного парка. Хотите описать свет как волну – устраивайте эксперименты по дифракции и интерференции. А если хотите описать свет как частицы – фотоэффект вам в руки! Применение двух взаимоисключающих моделей для описания одного природного явления назвали принципом дополнительности.
Но на этом история не закончилась. Вслед за Эйнштейном на сцену выскочил Луи де Бройль со своим номером. Ему пришло в голову удивить публику следующим трюком:
– Так! Идея следующая. Там, в этом микромире, где все такое маленькое и непонятное, световые волны оказались частицами. Так может быть, и частицы тоже обладают свойствами волн, а? Как тебе такое, Макс Планк?
Тоже ведь гениальная идея, согласитесь. Если фотоны обладают свойствами волн и частиц одновременно, почему бы и частицам, электронам, например, не иметь частоты и длины волны?
Позже был проведен аналог двухщелевого эксперимента с пучком электронов. И они исправно нарисовали на экране интерференционную картину. В точности как свет. Хотя всем в ту пору было известно, что электроны – это маленькие отрицательно заряженные шарики, которые кружатся вокруг положительного заряженного ядра атома.
– А вдруг, – пришла в чью-то голову свежая идея, – поток электрончиков, пролетающих в эти щели, синхронно колеблется? Вдруг согласованное движение электронов образует волны в электронном потоке? Ну, так же как образуется звуковая волна в воздухе? И в результате мы видим интерференционную картину? Ась?
Хм. Как это проверить? Да очень просто! Надо запускать в установку электроны по одному. И если после тысяч простреленных через две щели электронов на экране постепенно образуются две засвеченные полосы напротив щелей, тогда электроны – однозначно частицы! А если постепенно, отдельными точечками, нашлепается на экране та же интерференционная картина, значит, они – волны! Точнее, в полете ведут себя как волны, а точками (частицами) становятся, уже ударившись в экран.
Так ведут себя волны. Каждая щель является вторичным источником волн, которые складываются-вычитаются с волнами из соседней щели, образуя красивый интерференционный узор.
Рис. 8
Этот эксперимент был проведен. Электроны пуляли по одному. Они пролетали через установку, шлепались в экран, оставляя каждый после себя точечный след, и постепенно-постепенно на экране нарисовалась интерференционная картина.
Вот тут уже надо было крякнуть, сесть на табуретку, перекрутить портянки, достать кисет с махоркой и вдумчиво перекурить. Что вообще произошло?
Это ведь не просто означало, что электроны в свободном полете вели себя как волны! Их же пускали по одному! И после пролета через щелевую часть установки электроны хлопались на экран, уже проинтерферировав сами с собой, то есть волны складывались и вычитались горбушками и впадинками, оставляя на экране светлые и темные полосы. Но чтобы такой интерференционный рисунок получить с водяными или световыми волнами, нужно, чтобы каждая щель была вторичным источником волн, которые в пространстве за щелевым экраном будут между собой складываться и вычитаться (см. картинку).