Оценить:
 Рейтинг: 0

Целевое питание для нормализации показателей здоровья

Жанр
Год написания книги
2021
<< 1 2 3 4 5 6 >>
На страницу:
5 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

– инсульт;

– мигрень;

– возрастная макулярная дегенерация;

– потеря слуха;

– атрофия мозга;

– болезнь Альцгеймера.

Почему может расти уровень гомоцистеина? Как правило, он повышается с возрастом, при нарушении в работе фолатного цикла, при изменениях в работе почек, из-за чего он плохо выводится из организма, при недостатке в организме витаминов группы В, при гипотиреозе, при чрезмерном употреблении продуктов, содержащих метионин, – прежде всего мяса, молочных продуктов, яиц, при избыточном употреблении кофе (более 3—5 чашек в день), при псориазе, гормонозависимых заболеваниях, курении и т. д.

Под фолатным циклом понимается совокупность сложных биохимических реакций, в результате которых происходит трансформация фолиевой кислоты, поступающей в организм с пищей в ее активную форму. В активной форме фолиевая кислота принимает участие в обмене гомоцистеина и уменьшает его концентрацию в крови. Существует еще один путь обезвреживания гомоцистеина – превращение его в цистоционин с участием пиридоксальфосфата. Оба эти превращения координируются S-аденозилметионином (SAM).

Для полноценной реализации фолатного цикла требуются определенные ферменты: метилентетрагидрофолатредуктаза (MTHFR), метионинсинтаза (MTR), метионинсинтазаредуктаза (MTRR), цистатион-B-синтаза (ЦВС), транспортер фолатов (SLC19A1). Эти ферменты, как и все другие белки, закодированы одноименными генами, которые называются генами фолатного цикла. Эти гены могут иметь свои особенности, так называемые полиморфизмы, и у каждого они могут быть свои. Причиной полиморфизма генов являются различные модификации в молекуле ДНК, приводящие к изменению свойств гена и, как следствие, к изменению производимых белков, ферментов и т. д. Модификации в молекуле ДНК происходят вследствие того, что в процессе митоза клетка в первую очередь копирует свою ДНК так, чтобы новая клетка получила идентичный набор генетических инструкций. Однако в процессе репликации могут возникать ошибки («опечатки»), которые и приводят к возникновению изменений (полиморфизму) в последовательности ДНК. Эти полиморфизмы оказывают сильное влияние на очень важный для организма процесс метилирования.

Метилирование – это присоединение одного атома углерода и трех атомов водорода (называемых метильной группой CH

) к другой молекуле. В организме человека за секунду происходит около миллиарда реакций метилирования. От метилирования зависит процесс выработки энергии, гормональный баланс, иммунный ответ, процессы восстановления нервов, хрящей, ДНК, баланс нейротрансмиттеров, скорость старения организма, стабильность химического состава тела, сохранение памяти, и, что очень важно, – риск сердечно-сосудистых и онкологических заболеваний, и многое другое. Метильные группы осуществляют контроль: процессов воспаления, детоксикации токсичных микроорганизмов, выработки глутатиона, производства лимфоцитов, процессов экспрессии и репрессии генов, стресс-реакции организма и т. д. Таким образом крайне важно, чтобы метилирование происходило с максимальной эффективностью, так как от него зависит слишком большое количество химических реакций в организме. Возникает вопрос: а при чем здесь гомоцистеин? Дело в том, что эффективность метилирования как раз определяют по уровню гомоцистеина. Желательно, чтобы он был меньше 8 ммоль/л, хотя некоторые лаборатории прописывают как норму значительно более высокие значения. Правда, в последние годы происходит ревизия нормы гомоцистеина и уменьшение ее верхнего значения до 12 мкмоль/л.

Считается, что гены даны человеку при рождении, и изменить уже ничего нельзя. Правда техническая возможность таких изменений в настоящее время существует, но вмешиваться в этот процесс на данном этапе очень опасно ввиду неизученности плейотропного эффекта, оказываемого каждым геном. Но как выяснилось сравнительно недавно, гены можно включать и выключать, можно усиливать их действие и можно уменьшать их активность. Более того, большинство генов, находящихся в ядерном ДНК во всех клетках, почти все время выключены. В противном случае гены, находящиеся в клетках, например, мышц, стали бы производить в них и белки, необходимые для формирования зубов. Все клетки одного человека обладают одной и той же ДНК, и, следовательно, одними и теми же генами. Различия между клетками заключаются в том, какие конкретно гены активны и насколько они активны. Таким образом, в каждый конкретный момент в клетке активны лишь те гены, которые ей в этот момент необходимы, остальные гены инактивированы. Включение и выключение генов производится различными методами, один из которых заключается в присоединении к определенным участкам ДНК метильных меток. Более конкретно, при метилировании CH3 добавляется в С5 позиции к цитозиновому кольцу, являющемуся частью CpG—динуклеотида (два нуклеотида соединяясь путем конденсации образуют динуклеотид). В дальнейшем, возможно, ферменты окислят метилированный цитозин и в результате деметилирования превратят его обратно в цитозин. Это и есть метилирование ДНК, которое осуществляется белками, называемыми метилтрансферазами. Метилирование ДНК инактивирует экспрессию эндогенных ретровирусных генов, встроенных в геном хозяина, и тем самым нейтрализует их. Но самое главное – метилирование ДНК оказывает самое непосредственное влияние на развитие практически всех типов онкозаболеваний. Установлено, что метилирование в раковых клетках сильно отличается от нормальных в основном за счет деметилирования генома и локального гиперметилирования в области генов-онкосупрессоров, что приводит к их блокированию. Вообще метилирование ДНК является важным маркером для диагностики онкологии ввиду следующих причин:

– Метилирование – одно из ранних событий в канцерогенезе.

– Метилирование генов, вовлеченных в канцерогенез, отсутствует в ДНК из нормальных тканей.

– Определенное число генов, вовлеченных в канцерогенез, инактивируется вследствие метилирования.

– В настоящее время существуют эффективные методы, позволяющие проводить анализ метилирования ДНК.

В качестве примера, выявление метилирования гена p16 в гиперплазированном эпителии бронхолегочной системы может свидетельствовать о возникновении рака легких за 3—5 лет до клинических проявлений.

Полиморфизмы в генах, по инструкциям которых производятся ранее перечисленные ферменты фолатного цикла, оказывают определенное влияние на процесс метилирования. Однако самые серьезные последствия, особенно когда речь идет о риске возникновения рака, оказывают вариации в гене MTHFR, которые имеются примерно у 50% населения. Этот ген кодирует одноименный фермент MTHFR, мутации в котором, как доказано в многочисленных исследованиях, повышают риск возникновения различных видов онкозаболеваний, в том числе рака молочной железы, причем не в меньшей степени, чем мутации в печально известном гене BRCA[23 - Mojgan Hosseini, Massoud Houshmand, and Ahmad Ebrahimi, «MTHFR Polymorphisms and Breast Cancer Risk,» Archives of Medical Science 7, no. 1 (February 2011): 134—37, doi:10.5114/aoms.2011.20618.]. Подтверждением данного факта является то, что в онкоклетках постоянно обнаруживают изменения в профиле метилирования ДНК. Уменьшение метилирования ДНК (гипометилирование) может привести к высокой активности онкогенов и развитию рака, а гиперметилирование (избыточная экспрессия) – к заглушению (сайленсингу) генов-супрессоров, которые способствуют сдерживанию развития опухолей. Надо иметь в виду, что мутации в гене MTHFR могут снизить активность соответствующего фермента до 70% ниже нормы. Фермент MTHFR преобразует фолат (витамин В9) в биологически активную форму – метилфолат, который необходим как источник углерода, используемого для производства метильных групп, осуществляющих репрессию определенных генов. Вообще фолат необходим для многих функций. Он участвует в образовании оснований ДНК – аденина и гуанина, он необходим для синтеза ДНК, для формирования клеток, для производства красных кровяных телец, для метаболизма, для исключения дефектов нервной трубки плода и расщепления позвоночника. Недостаточное содержание фолатов в пище может не только привести к множеству патологических состояний (фолат-дефицитной анемии, тревожности, заболеваниям щитовидной железы, утомляемости, повышенному риску выкидышей), но и снизить процесс метилирования ДНК, т. е. привести к гипометилированию.

В каких продуктах питания содержатся фолаты? Перечислим основные: шпинат, салат романо, цикорий, спаржа, зелень горчицы, зелень репы, утиная печень, китайская листовая капуста, брокколи, кресс-салат, кинза, гусиная печень. Кстати, если принимать витаминную форму фолиевой кислоты, то лучше ее биологически активную форму – метилфолат, так как при наличии определенной мутации в гене MTHFR фолиевая кислота не усваивается. Метилфолат не требует фермента, который кодируется геном MTHFR для получения функционального фолата, требуемого для метаболизма гомоцистеина, что очень важно при наличии достаточно распространенного полиморфизма данного гена. Следовательно, при наличии полиморфизма гена MTHFR польза от использования метилфолата значительно больше, чем от фолиевой кислоты.

Принимая во внимание, что около 20% населения испытывают недостаток фолатов и еще около 50% имеют мутации в гене MTHFR, становится очевидным, что многие онкогены будут не заметилированы (не репрессированы) и, как следствие этого, онкозаболевания будут свирепствовать. Это очень важное обстоятельство, на которое, на мой взгляд, не обращают должного внимания многие врачи профилактической медицины и даже практикующие онкологи, поэтому мы к нему еще вернемся в дальнейшем изложении.

Не только продукты, содержащие фолаты, оказывают влияние на процесс метилирования. На этот процесс влияют также витамины В1, В2, В6, В12 и такие соединения, содержащиеся в пище, как метионин, холин и бетаин, являющиеся ключевыми компонентами процесса метилирования, одновременное нахождение в пище которых является необходимым. Бетаин может синтезироваться из своего предшественника холина или поступать из таких продуктов питания как свекла, шпинат, трава марь берляндье, которая распространена в Северной Америке, а в России считается сорной, дикорастущей травой и практически не употребляется в пищу. Данная трава, содержащая фитонутриент сапонин, подавляющий рост онкоклеток, обладает мощным противовоспалительным свойством.

В работе[24 - Stuart A. S. Craig, «Betaine in Human Nutrition,» American Journal of Clinical Nutrition 80, no. 3 (September 2004): 539—49, http://ajcn.nutrition.org/content/80/3/539.full] показано, что бетаин снижает риск сердечно-сосудистых заболеваний и оказывает положительный эффект в профилактике онкозаболеваний. Холин является важным донором метильных групп. Имеются исследования, в которых показано, что дефицит холина коррелирует с повышенным риском возникновения рака печени и увеличенной чувствительностью к химическим канцерогенам[25 - H. Pellanda, «Betaine Homocysteine Methyltransferase (BHMT) – Dependent Remethylation Pathway in Human Healthy and Tumoral Liver,» Clinical Chemistry and Laboratory Medicine 51, no. 3 (March 1, 2013): 617—21, doi:10.1515/cclm-2012-0689.]. Авторы объясняют это изменением экспрессии значительного количества генов, управляющих дифференцировкой, апоптозом, репарацией ДНК, пролиферацией клеток. Принимая во внимание, что из холина может образовываться и бетаин, а также учитывая важную роль их обоих в реакциях метилирования, становится понятной существенная необходимость употребления продуктов, содержащих холин. Основными источниками холина являются: яйца, индейка, курица, морские гребешки и особенно дикие креветки. Здесь необходимо сделать небольшое отступление. В последнее время появились исследования, в которых предполагается, что холин, возможно, является потенциальной причиной возникновения рака предстательной железы. В случае наличия рака предстательной железы предлагается уменьшить употребление животного белка и продуктов, содержащих значительную концентрацию холина (например, яйца), а также повысить содержание растительной пищи в рационе питания, причем рак предстательной железы является одним из немногих видов онкозаболеваний при которых даются рекомендации по снижению употребления животного белка. Что касается яиц, реабилитированных после обвинения в повышении уровня холестерина, то кроме высокого содержания холина они являются важным источником селена, омега 3, витамина D, витамина В12. Куриные яйца вполне могут быть заменены перепелиными, индюшачьими, утиными, которые зачастую содержат больше кальция, калия, железа, белка и других основных минералов и питательных веществ.

Как приведено выше, процесс метилирования зависит от присутствия в пищи достаточного количества витаминов В6, В9 и В12. При их недостаточности образуемый из метионина, содержащегося в большом количестве в мышечном мясе, гомоцистеин не сможет осуществить обратное превращение в метионин, и уровень этого токсичного вещества будет повышен, что будет свидетельствовать о пониженном метилировании ДНК со всеми вытекающими последствиями. Этого можно избежать, если совместно с мышечным мясом употреблять, например, и содержащиеся в нем мясные субпродукты, насыщенные витаминами группы В. Практикуемое в настоящее время использование в основном мышечного мяса и выбрасывание внутренних органов, содержащих витамины группы В, и соединительной ткани, содержащей коллаген, не позволяет достичь идеального баланса аминокислот и питательных веществ в организме. В мясных субпродуктах (потроха, сердце и т. д.) содержится витаминов и минералов больше, чем в мышечном мясе. Так, например, в куриной печени содержится почти 100% суточной нормы важного для метилирования витамина В12. Вообще витамин В12, кроме метилирования, используется во многих физиологических процессах:

– создании красных кровяных телец,

– формировании миелина,

– метаболизме белка,

– контроле неврологических процессов.

При недостатке витамина В12 могут возникнуть разрывы в структуре ДНК, что приводит к дополнительному риску возникновения рака. Сильная связь, существующая между витамином В12 и фолатом, осложняет оценку их независимого дефицита и терапевтического эффекта. Более того, недостаток В12 вызывает вторичный функциональный дефицит В9, называемый «ловушка 5-метилтетрагидрофолата». Ранним признаком дефицита как В12, так и В9 является уменьшение содержания эритроцитов в крови, так как оба эти витамины оказывают влияние на производство эритроцитов. Отметим также, что увеличение фолатов может «замаскировать» недостаток В12 за счет нормализации содержания эритроцитов.

В каких продуктах содержится витамин В12? Сразу отметим, что растительная пища не содержит витамин В12. В очень небольшом количестве витамин В12 содержится в грибах. Только в животной пище содержится биологически активная форма витамина В12, особенно высокой концентрацией В12 отличаются печень, почки, яйца, рыба. Известно, что многие переработанные продукты, молоко, хлеб, пивные дрожжи и цельные злаки искусственно обогащают синтетическим витамином В12. Такие продукты обычно рекомендуют веганам для поддержания в их организмах требуемой концентрации витамина В12. Но, как считают некоторые специалисты, синтетические как В12, так и В9 (фолиевая кислота) отличаются токсичностью. Для создания синтетической формы витамина В12 используют химическую формулу цианида калия, поэтому он получил название цианокобаламин. Как считается, он не только повреждает митохондрии, но и не реализует функции природного витамина В12, хотя при анализе и демонстрирует нормальное содержание витамина В12 в крови. Из вышеприведенного вытекает, что все-таки лучше употреблять в пищу природные источники как витамина В12, так и В9.

Витамин В6 является кофактором реакций повторного метилирования и трассульфурации гомоцистеина. Недостаток В6 может привести к накоплению гомоцистеина. Витамин В6 активен только в фосфорилированной форме, и зачастую именно добавление его в этой форме оказывает большее влияние на снижение гомоцистеина.

Имеются сведения о том, что эстроген уменьшает уровень гомоцистеина, что, возможно, объясняет, почему у мужчин в среднем уровень гомоцистеина выше, чем у женщин. Не исключено, что по этой же причине терапия эстрогенами уменьшает риск и сердечно-сосудистых заболеваний.

А что делать, если принятые меры по снижению уровня гомоцистеина все-таки не дали результата, и уровень остался высоким, несмотря на потребление гомоцистеин-понижающих веществ? Как правило, это указывает на проблемы с почками, так как любое снижение функции почек приводит к накоплению гомоцистеина. Даже у пациентов с легкими нарушениями в работе почек обнаруживается повышенный уровень гомоцистеина. Прием некоторых лекарственных препаратов также способствуют поддержанию повышенного уровня гомоцистеина. К этим специфическим препаратам относятся: метотрексат, назначаемый при ревматоидном артрите, ниацин (витамин В3), используемый при высоком уровне холестерина, холестирамин, назначаемый при повышенном уровне триглицеридов, метформин, используемый при сахарном диабете, а также ряд противоэпилептических препаратов.

Итак, для снижения уровня гомоцистеина в первую очередь необходимо употреблять вышеперечисленные продукты, содержащие витамины В6, В9, В12. Определенную роль в уменьшении концентрации гомоцистеина играют витамин В2, триметилглицин и цинк. Витамин В2 является кофактором двух ферментов, участвующих в повторном метилировании гомоцистеина. Добавление витамина В2 влияет на фолатный цикл и оказывает положительное влияние на метаболизм гомоцистеина. Вообще, витамины В2, В6, В9 и В12 играют взаимозависимую и взаимно поддерживающую роль в метаболизме гомоцистеина.

Для снижения уровня гомоцистеина можно использовать только сами витамины, однако для определения необходимой дозировки предварительно следует оценить существующий уровень гомоцистеина в крови. В нижеприведенной таблице показана связь между первоначальным уровнем гомоцистеина и дозой витаминов и рекомендуемых веществ[26 - Холфорд П. Программа «Здоровье на 100%». М., 2021. 400 с.]:

Отметим, что некоторые специалисты предлагают в этой схеме использовать витамин В1 вместо витамина В2. И наконец, нельзя забывать о влиянии холина и бетаина на эффективность метилирования и на снижение гомоцистеина. Поэтому употребление ранее перечисленных продуктов, их содержащих, будет вполне уместным.

Какие диетические интервенции могут способствовать снижению гомоцистеина?

– Бетаин (триметилглицин) и холин. Холин трансформируется в организме в триметилглицин.

– N-ацетилцистеин.

– S-аденозилметионин способствует трансформации гомоцистеина в цистеин, превращающийся в глутатион, который является мощным антиоксидантом.

– Таурин способствует блокированию абсорбции метионина и тем самым снижает его превращение в гомоцистеин. После месяца приема таурина уровень гомоцистеина может значительно снизиться.

Как осуществляется утилизация гомоцистеина? Примерно половина гомоцистеина по фолат-зависимому пути превращается в метионин, при этом метилированная форма фолата переносит свою метильную группу в гомоцистеин. Другой путь утилизации осуществляется фолат-независимым путем, при котором бетаин передает метильную группу гомоцистеину, что происходит главным образом в клетках почек и печени. Существует еще один путь утилизации при котором гомоцистеин трансформируется в цистатионин посредством транссульфурации, в которой участвует аминокислота серин и два фермента – цистатионин-бета-синтаза и цистатионин-гамма-лиаза, а также витамин В6. В дальнейшем цистатионин может превратиться в цистеин, являющийся атрибутом глутатиона, или метаболизироваться в энергию.

Высокое содержание гомоцистеина может быть результатом дефицита определенных питательных веществ и витаминов. Причиной высокого уровня гомоцистеина могут также быть:

– копченые продукты;

– частое употребление кофе;

– употребление алкоголя;

– физическое бездействие;

– старение;

– менопауза;

– сахарный диабет;

– псориаз;
<< 1 2 3 4 5 6 >>
На страницу:
5 из 6