Оценить:
 Рейтинг: 0

Нейросети. Раскройте всю мощь нейронных сетей: полное руководство по пониманию, внедрению ИИ

Год написания книги
2023
<< 1 2 3 4 5 6 7 >>
На страницу:
2 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

f (x) = 1 / (1 + e^ (-x))

Выходные данные сигмовидной функции представляют собой уровень вероятности или достоверности, связанный с конкретным классом или событием.

2. Выпрямленная линейная единица (ReLU): Функция ReLU – популярная функция активации, используемая в скрытых слоях нейронных сетей. Он выводит входное значение, если оно положительное, и 0 в противном случае. Математически функция ReLU определяется как:

f (x) = max (0, x)

ReLU привносит в сеть разреженность и нелинейность, помогая ей изучать и представлять сложные функции в данных.

3. Функция Softmax: Функция softmax обычно используется в задачах классификации нескольких классов. Он принимает набор входных данных и преобразует их в вероятности, гарантируя, что вероятности в сумме равны 1. Функция softmax определяется как:

f (x_i) = e^ (x_i) / sum (e^ (x_j)), для каждой x_i в наборе входных данных

Выходные данные функции softmax представляют собой распределение вероятностей по нескольким классам, что позволяет сети делать прогнозы для каждого класса.

Это всего лишь несколько примеров функций активации, используемых в нейронных сетях. Другие функции активации, такие как tanh (гиперболический тангенс), Leaky ReLU и экспоненциальная линейная единица (ELU), также существуют и используются в зависимости от характера проблемы и архитектуры сети.

Выбор подходящей функции активации имеет решающее значение, поскольку она влияет на динамику обучения, конвергенцию и общую производительность сети. Часто требуется экспериментирование и знание предметной области, чтобы определить наиболее подходящую функцию активации для данной задачи.

Архитектуры нейронных сетей

Архитектуры нейронных сетей относятся к конкретным расположениям и конфигурациям нейронов и слоев внутри нейронной сети. Различные архитектуры предназначены для обработки различных типов данных и решения конкретных задач. Давайте рассмотрим некоторые распространенные архитектуры нейронных сетей:

1. Нейронные сети с прямой связью (FNN):

– Нейронные сети с прямой связью – самый простой и распространенный тип нейронных сетей.

– Информация течет в одном направлении, от входного слоя через скрытые слои к выходному слою, без циклов и циклов.

– FNN широко используются для таких задач, как классификация, регрессия и распознавание образов.

– Они могут иметь различное количество скрытых слоев и нейронов внутри каждого слоя.

2. Сверточные нейронные сети (CNN):

– Сверточные нейронные сети в основном используются для обработки сетчатых данных, таких как изображения, видеокадры или данные временных рядов.

– Они используют специализированные слои, такие как сверточные и объединяющие слои, для извлечения пространственных или временных объектов из данных.

– CNN отлично справляются с такими задачами, как классификация изображений, обнаружение объектов и сегментация изображений.

– Они предназначены для захвата локальных шаблонов и иерархий в данных.

3. Рекуррентные нейронные сети (RNN):

– Рекуррентные нейронные сети предназначены для последовательной обработки данных, где выход зависит не только от текущего входа, но и от прошлых входов.

– Они имеют повторяющиеся соединения внутри сети, что позволяет хранить информацию и передавать ее между временными шагами.

– RNN используются в таких задачах, как обработка естественного языка, распознавание речи и прогнозирование временных рядов.

– Long Short-Term Memory (LSTM) и Gated Recurrent Unit (GRU) – популярные варианты RNN, которые помогают решить проблему исчезающего градиента и зафиксировать долгосрочные зависимости.

4. Генеративно-состязательные сети (GAN):

– Генеративно-состязательные сети состоят из двух сетей: генератора и дискриминатора.

– Сеть-генератор учится генерировать синтетические данные, напоминающие реальные данные, в то время как сеть дискриминаторов учится различать реальные и поддельные данные.

– GAN используются для таких задач, как генерация изображений, генерация текста и синтез данных.

– Они показали замечательный успех в создании реалистичных и высококачественных образцов.

5. Сети обучения с подкреплением (RLN):

– Сети обучения с подкреплением объединяют нейронные сети с алгоритмами обучения с подкреплением.

– Они учатся принимать оптимальные решения в окружающей среде, взаимодействуя с ней и получая награды или штрафы.

– RLN используются в автономной робототехнике, играх и задачах последовательного принятия решений.

– Deep Q-Networks (DQN) и Proximal Policy Optimization (PPO) – популярные алгоритмы RLN.

Это всего лишь несколько примеров архитектур нейронных сетей, и существует множество вариаций и комбинаций, основанных на конкретных потребностях и достижениях исследований. Понимание характеристик и приложений различных архитектур позволяет практикам выбрать наиболее подходящий дизайн для своей конкретной проблемной области.

Обучение нейронных сетей

Обучение нейронных сетей включает в себя процесс оптимизации параметров сети, чтобы учиться на данных и делать точные прогнозы. Обучение позволяет сети корректировать свои веса и предубеждения на основе предоставленных примеров. Давайте углубимся в ключевые аспекты обучения нейронных сетей:

1. Функции потерь:

– Функции потерь измеряют разницу между прогнозируемыми выходами сети и желаемыми выходами.

– Общие функции потерь включают среднюю квадратичную ошибку (MSE) для задач регрессии и категориальную перекрестную энтропию для задач классификации.

– Выбор функции потерь зависит от характера проблемы и желаемой цели оптимизации.

2. Обратное распространение:

– Обратное распространение – фундаментальный алгоритм обучения нейронных сетей.

– Вычисляет градиенты функции потерь по отношению к параметрам сети (весам и смещениям).

– Градиенты представляют собой направление и величину самого крутого спуска, указывая, как должны быть обновлены параметры, чтобы минимизировать потери.

– Обратное распространение распространяет градиенты назад по сети, слой за слоем, используя правило цепи исчисления.

3. Градиентный спуск:
<< 1 2 3 4 5 6 7 >>
На страницу:
2 из 7