Оценить:
 Рейтинг: 3.6

Физическая химия: конспект лекций

Год написания книги
2009
<< 1 2 3 4 5 6 ... 14 >>
На страницу:
2 из 14
Настройки чтения
Размер шрифта
Высота строк
Поля

V

– молекулярный объем = 22,4 м

;

m – масса одной молекулы;

v – скорость молекулы.

Преобразуем уравнение (4):

где E

– энергия одной молекулы.

Видно, что справа стоит полная кинетическая энергия всех молекул. С другой стороны, сравнивая с уравнением Менделеева – Клапейрона, видим, что это произведение равно RT.

Это позволяет выразить среднюю кинетическую энергию молекулы газа:

где к = R / Na – постоянная Больцмана, равная 1,38 г 10–

кДж/кмоль. Зная кинетическую энергию молекулы, можно рассчитать ее среднюю скорость

Около 1860 г. Д. К. Максвелл вывел функцию, описывающую распределение молекул газа по скоростям. Эта функция имеет на графике вид характерной кривой с максимумом около наиболее вероятной скорости примерно 500 м/с. Важно заметить, что существуют молекулы со скоростями, превышающими этот максимум. С другой стороны, уравнение (6) позволяет сделать вывод об увеличении доли молекул с большими скоростями при нагревании газа. Спустя почти 60 лет гениальная догадка Д. К. Максвелла была подтверждена в опытах О. Штерна.

4. Уравнение состояния реального газа

Исследования показали, что уравнение Менделеева – Клапейрона не очень точно выполняется при исследовании разных газов. Голландский физик Я. Д. Ван-дер-Ваальс первым понял причины этих отклонений: одна из них состоит в том, что вследствие огромного числа молекул, их собственный объем в целом сравним с объемом сосуда, в котором находится газ. С другой стороны, существование взаимодействия между молекулами газа слегка искажает показание манометров, с помощью которых обычно измеряют давление газа. В итоге Ван-дер-Ваальс получил уравнение следующего вида:

где а, в – постоянные величины для различных газов.

Недостаток этого уравнения в том, что а и в должны быть измерены для каждого газа эмпирически. Преимущество в том, что оно включает область перехода газа в жидкую фазу при высоких давлениях и низких температурах. Осознание этого сделало возможным получать любой газ в жидкой фазе.

ЛЕКЦИЯ № 2. Химическая термодинамика

Химическая термодинамика – наука, изучающая условия устойчивости систем и законы.

Термодинамика – наука о макросистемах.

Она позволяет apriori определить принципиальную невозможность того или иного процесса. Физические и химические явления в термодинамике исследуются с помощью основных законов термодинамики. Состояние рассматриваемых объектов в термодинамике определяется непосредственно измеряемыми величинами, характеризующими вещества; механизм процесса и сама структура вещества не рассматриваются.

В химической термодинамике изучается применение законов термодинамики к химическим и физико-химическим явлениям.

В ней рассматриваются главным образом:

1) тепловые балансы процессов, включая тепловые эффекты физических и химических процессов;

2) фазовые равновесия для индивидуальных веществ и смесей;

3) химическое равновесие.

Тепловые балансы составляют на основе первого закона термодинамики. На основе второго и третьего законов проводят анализ фазового и химического равновесий.

Изучение законов, которые описывают химические и физические равновесия, имеет огромное значение в химической термодинамике. Значение их позволяет решать задачи для производственной и научно-исследовательской работы. Рассмотрим основные задачи:

1) определение условий, при которых данный процесс становится возможным;

2) нахождение пределов устойчивости изучаемых веществ в тех или иных условиях;

3) устранение побочных реакций;

4) выбор оптимального режима процесса (давления, концентрации реагентов и т. д.).

Основные понятия и определения

1. Системы и их классификация

Система – тело или несколько тел, находящихся во взаимодействии между собой (диффузия, теплообмен, химическая реакция) и отделенных от окружающей среды.

Состояние системы в термодинамике определяется с помощью набора переменных, называемых параметрами состояния и характеризующих термодинамическое состояние при равновесии. Всякое изменение, происходящее в системе и связанное с изменением хотя бы одного из параметров состояния, называется термодинамическим процессом.

Системы имеют определенные границы, отделяющие их от внешней среды, и могут быть гомогенными или гетерогенными.

Гомогенная система – система, в которой все макроскопические свойства в любых ее частях имеют одно и то же значение или непрерывно меняются от точки к точке. Примеры: ненасыщенные растворы, пар, газовые смеси. Составленные части гомогенной системы не могут быть выделены из нее с помощью простых механических приемов (фильтрования, отбора и т. д.).

Гетерогенная система – система, составные части которой отделены друг от друга видимыми поверхностями раздела, на которых происходят резкие скачкообразные изменения какого-либо свойства. Примеры: насыщенный раствор какой-либо соли, находящийся в равновесии с кристаллами этой соли, две несмешивающиеся жидкости и т. д.). Составные части таких систем могут быть отделены друг от друга с помощью механических операций.

Совокупность тел, энергетически взаимодействующих между собой и с другими телами, обменивающихся с ними веществом, называется термодинамической системой.

Системы делят на изолированные (это те системы, которые не обмениваются энергией и веществом с другими системами), открытые (те системы, которые обмениваются с окружающей средой и веществом, и энергией), закрытые (системы, в которых есть только обмен энергией).

2. Термодинамические параметры. Термодинамические показатели. Баланс напряжений

Любая ТДС характеризуется параметрами: температура, давление, плотность, концентрация, мольный объем. В любой ТДС обязательно протекают процессы, и они могут быть равновесными, неравновесными, обратимыми и необратимыми.

Если в ТДС определенное свойство системы не будет изменяться во времени, т. е. оно будет одинаковым во всех точках объема, то такие процессы – равновесные.

В неравновесных процессах свойство системы будет изменяться во времени без воздействия окружающей среды.

Обратимые процессы – процессы, в которых система возвращается в первоначальное состояние.

Необратимые – когда система не возвращается в первоначальное состояние.

Функции могут зависеть от пути процесса. Функции, которые зависят от начального и конечного состояний системы и не зависят от пути процесса, – функции состояния; внутренняя энергия, энтальпия, энтропия и другие – полные дифференциалы.

Функции, которые зависят от начального и конечного состояний системы и зависят от пути процесса, не являются функциями состояния и не являются полными дифференциалами Q, A.

Функции можно разделить на две группы: экстенсивные и интенсивные.
<< 1 2 3 4 5 6 ... 14 >>
На страницу:
2 из 14

Другие аудиокниги автора А. В. Березовчук