см
/г·с
. Наиболее точное значение константы микро гравитации получено при расчёте по уравнению 3-го закона Кеплера [8] по длинам волн характеристического рентгеновского излучения для 10 химических элементов, расположенных в разных частях периодической таблицы химических элементов. Получено среднее значение константы микро гравитации, равное g = 1,847·10
± 0.045 см
/с
г.
Наглядным и убедительным для понимания является расчёт величины g по формуле орбитальной скорости, в которую она входит. Формула имеет вид:
v
= gmd/r, (3)
где v– орбитальная скорость, g– константа микрогравитации, m– атомная масса, d– дальтон, r– радиус орбиты, на которой обращается электрон.
Рассмотрим расчёт на примере атома водорода. Минимальная частота излучения у водорода наблюдается в серии Хамфри 0,02424.10
с
. Логично предположить, что эта частота относится к электрону, обращающемуся на крайней поверхностной орбите, радиус которой равен радиусу атома водорода 110 пм. Атомная масса водорода 1,008. d = 1,661.10
м. Подставив приведенные значения величин в уравнение (4), получим значение константы микрогравитации g = 1,843 см
/гс
, которое близко по величине к выше приведенному.
Микро гравитационная константа g является таким же объединяющим началом для объектов микро мира, как константа G в законе Ньютона.
Другой скрепой для Солнечной системы и системы атома является закон орбитальных расстояний, который включает в себя практически все параметры характеризующие обе системы.
Орбитальные расстояния в атоме определяются законом разрешённых орбит Бора:
r = kn
(4)
где r- радиус орбиты, k- константа характерная для данного атома, n– главное квантовое число или в развернутом виде:
r = n
(gm/c?)
, (5)
где: r — радиус разрешённых орбит атома, n – квантовое число (ряд целых чисел), g — константа микро гравитации, равная 1,847.10
см
/гс
, m- масса ядра атома, с– скорость света, ?- частота вращения ядра, с
.
Орбитальные расстояния в Солнечной и спутниковых системах выражаются [9] аналогичной формулой:
R = k
n
(6)
где R– орбитальное расстояние, k
– константа, характерная для данной планетарной макросистемы, n– ряд целых чисел (главное квантовое число) или в развёрнутом виде:
R = n
(GMT/C)
, (7)
где: R– орбитальное расстояние, n– главное квантовое число (ряд целых чисел), G– гравитационная постоянная, М и Т– масса и период осевого вращения центрального тела, С– скорость распространения гравитационного излучения, равная 0,25.10
см/с.
Идентичность уравнений (1) и (2), на наш взгляд, говорит о глубокой аналогии рассматриваемых систем и существовании единых закономерностей, лежащих в их основе.
Тела, взаимодействующие по уравнению (1) и (2) находятся во взаимном орбитальном движении и подчиняются третьему закону Кеплера:
R
/T
= GM/4?
(8)
где: М– масса центрального тела, Т– период обращения орбитального тела.
Это по-существу третья «скрепа», которая действует, как в Солнечной системе, так и в системе атома, но и тесно связывает изменения в этих системах, которые имеют место при агрегатных и фазовых переходах веществ.
В макромире возможен новый подход к проблеме агрегатных и фазовых переходов, если в основу взять предположение о том, что частицы вещества (атомы, молекулы) взаимодействуют между собой своими массами по обратно квадратичному закону тяготения. Поэтому во всех состояниях они находятся в орбитальном движении относительно друг друга [11]. В этом случае агрегатные и фазовые переходы увязываются с характером орбитального движения, изменениями орбит, по которым движутся частицы. Например, переход от реального газа (перегретого пара) к насыщенному состоянию означает изменение орбиты с гиперболической к параболической. Переход к жидкому состоянию вызван сменой разомкнутой параболической орбиты на замкнутую эллиптическую и круговую орбиту. В том и другом случае мы имеем дело с изменением агрегатного состояния, которое совпадает с фазовым переходом 1-го рода.