Оценить:
 Рейтинг: 0

Общая теория поля и структура вселенной

Год написания книги
2022
Теги
<< 1 2 3 4 >>
На страницу:
2 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля

см

/г·с

. Наиболее точное значение константы микро гравитации получено при расчёте по уравнению 3-го закона Кеплера [8] по длинам волн характеристического рентгеновского излучения для 10 химических элементов, расположенных в разных частях периодической таблицы химических элементов. Получено среднее значение константы микро гравитации, равное g = 1,847·10

± 0.045 см



г.

Наглядным и убедительным для понимания является расчёт величины g по формуле орбитальной скорости, в которую она входит. Формула имеет вид:

v

= gmd/r, (3)

где v– орбитальная скорость, g– константа микрогравитации, m– атомная масса, d– дальтон, r– радиус орбиты, на которой обращается электрон.

Рассмотрим расчёт на примере атома водорода. Минимальная частота излучения у водорода наблюдается в серии Хамфри 0,02424.10

с

. Логично предположить, что эта частота относится к электрону, обращающемуся на крайней поверхностной орбите, радиус которой равен радиусу атома водорода 110 пм. Атомная масса водорода 1,008. d = 1,661.10

м. Подставив приведенные значения величин в уравнение (4), получим значение константы микрогравитации g = 1,843 см

/гс

, которое близко по величине к выше приведенному.

Микро гравитационная константа g является таким же объединяющим началом для объектов микро мира, как константа G в законе Ньютона.

Другой скрепой для Солнечной системы и системы атома является закон орбитальных расстояний, который включает в себя практически все параметры характеризующие обе системы.

Орбитальные расстояния в атоме определяются законом разрешённых орбит Бора:

r = kn

(4)

где r- радиус орбиты, k- константа характерная для данного атома, n– главное квантовое число или в развернутом виде:

r = n

(gm/c?)

, (5)

где: r — радиус разрешённых орбит атома, n – квантовое число (ряд целых чисел), g — константа микро гравитации, равная 1,847.10

см

/гс

, m- масса ядра атома, с– скорость света, ?- частота вращения ядра, с

.

Орбитальные расстояния в Солнечной и спутниковых системах выражаются [9] аналогичной формулой:

R = k

n

(6)

где R– орбитальное расстояние, k

– константа, характерная для данной планетарной макросистемы, n– ряд целых чисел (главное квантовое число) или в развёрнутом виде:

R = n

(GMT/C)

, (7)

где: R– орбитальное расстояние, n– главное квантовое число (ряд целых чисел), G– гравитационная постоянная, М и Т– масса и период осевого вращения центрального тела, С– скорость распространения гравитационного излучения, равная 0,25.10

см/с.

Идентичность уравнений (1) и (2), на наш взгляд, говорит о глубокой аналогии рассматриваемых систем и существовании единых закономерностей, лежащих в их основе.

Тела, взаимодействующие по уравнению (1) и (2) находятся во взаимном орбитальном движении и подчиняются третьему закону Кеплера:

R

/T

= GM/4?

(8)

где: М– масса центрального тела, Т– период обращения орбитального тела.

Это по-существу третья «скрепа», которая действует, как в Солнечной системе, так и в системе атома, но и тесно связывает изменения в этих системах, которые имеют место при агрегатных и фазовых переходах веществ.

В макромире возможен новый подход к проблеме агрегатных и фазовых переходов, если в основу взять предположение о том, что частицы вещества (атомы, молекулы) взаимодействуют между собой своими массами по обратно квадратичному закону тяготения. Поэтому во всех состояниях они находятся в орбитальном движении относительно друг друга [11]. В этом случае агрегатные и фазовые переходы увязываются с характером орбитального движения, изменениями орбит, по которым движутся частицы. Например, переход от реального газа (перегретого пара) к насыщенному состоянию означает изменение орбиты с гиперболической к параболической. Переход к жидкому состоянию вызван сменой разомкнутой параболической орбиты на замкнутую эллиптическую и круговую орбиту. В том и другом случае мы имеем дело с изменением агрегатного состояния, которое совпадает с фазовым переходом 1-го рода.
<< 1 2 3 4 >>
На страницу:
2 из 4