Оценить:
 Рейтинг: 0

Медицинские информационные системы: многомерный анализ медицинских и экологических данных

Жанр
Год написания книги
2013
<< 1 ... 9 10 11 12 13 14 15 >>
На страницу:
13 из 15
Настройки чтения
Размер шрифта
Высота строк
Поля

, где n – ближайшая частота (или ранг частот) устройства. Возможны 3 варианта причин: ионный перенос флуктуаций клеточных мембран, регулирующих ионные потоки в клетке в полуинтервалах, полное управление неврогенной природы или суперпозиция случайных событий. Величины биологических параметров всегда флуктуируют во времени. Существуют доказательства 1/f-подобных флуктуаций биологических параметров от клеточного до поведенческого уровня. Возможны несколько механизмов генерации 1/f-подобных биологических ритмических флуктуаций Во-первых, 1/f-ионные флуктуационные потоки мембран клеток модулируют поток ионов внутрь клеток, которые в свою очередь модулируются изменениями интервалов импульсов клеток и нервов. Исследован новый механизм функциональной регуляции ионной проводимости каналов в зависимости от флуктуации окружающей среды (Bezrukov S. M. et al., 1995; Pustovoit M. A. et al., 1995). Во-вторых, временная задержка и ответы системной нервной регуляции могут быть причиной 1/f-модуляций, например флуктуации сердечного ритма и кровяного давления (Musha T., Yamamoto M., 1995).

Изучены 1/f-флуктуации нейронной активности нервной системы во время регистрации быстрых движений глаз кошек в период сна. Этот феномен наблюдался в обширной области мозга, такой как ретикулярная формация, таламус, церебральный кортекс, гиппокамп. Предполагают существование глобальной модулирующей системы в мозге с участием серотониноэргетики и холиноэргетики (Yamamoto M., 1995). Развитие автономной нервной системы плода выглядит так, что большую роль играют 1/f-и 1/f

-спектры сердцебиений плода, варьирующиеся на частотах ниже 0,05 Гц, которые поддерживают отношения парасимпатической и/или симпатической нервных систем и описывают процесс роста и взросления (Shono H. et al., 1995).

Экспериментальные данные указывают на присутствие в спектре интервалов сердцебиений в частотах 10

– 10

Гц. Каждый интервал сердечных сокращений имеет тенденцию быть некоррелированным с другими наблюдениями в течение 3 – 24 часов. Это может быть причиной 1/f-спектрального профиля хотя величина спектральной плотности для частот ниже 10

Гц не значима; наибольшие значения спектра указывают на ультранизкие частоты, что указывает на включение интервалов сердечных сокращений в общие автокорреляции в течение длительного времени. Авторы приходят к выводу о необходимости проверки таких гипотез в течение многомесячных наблюдений (Yamamoto M. et al., 1995).

В то же время есть указания на внешюю причинность таких вариаций. Изучение динамики сердечного ритма – R-R-интервала человека в зависимости от геофизических и метеорологических условий выявило корреляции индекса централизации и амплитуды респираторной волны кардиоритма с атмосферным давлением и геомагнитной активностью подтверждает такие предположения (Smirnova N. A., Augustinaite E. E., 1995). Исследование статистических свойств сердечного ритма на основе клинических данных о сердечной патологии показало возрастание абсолютной величины 1/f

у кардиальных больных (Ulbikas J. et al., 1995). В связи с этим корреляции показателей дыхательной и сердечно-сосудистой систем с ионосферными параметрами, приводимые ниже в настоящей работе, выглядят совершенно естественными.

Глава 3

Системно-статистический подход к исследованию биоритмов и ритмов внешней среды

3.1. Системный подход и синергетика

Исследование множества свойств различных явлений привело естествоиспытателей к необходимости системного подхода. Необходимость такого подхода при изучении целостного организма ощущалась исследователями давно. Термин «система» употребляется в том случае, когда подразумевается собранная вместе совокупность, упорядоченная и организованная, без четкого критерия объединения, упорядоченности, организованности. Системный подход исследований – следствие перемены теоретического подхода к пониманию изучаемых объектов (Эшби У. Р., 1969; Анохин П. К., 1973).

В литературе приводится много определений системы. Одно из них звучит так: система – комплекс избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношения приобретают характер взаимосодействия компонентов на получение фокусированного полезного результата. Результат функциональной системы является ее неотъемлемой частью (Анохин П. К., 1973). Функциональная система – единица интеграции целого организма, складывающаяся динамически для достижения любой его приспособительной деятельности и всегда на основе циклических взаимоотношений избирательно объединяющая специальные центрально-периферические образования (Анохин П. К., 1980).

Системный подход в медицине и биологии определяется через свойства и признаки самой системы, которые включают в себя: 1) комплекс взаимосвязанных элементов; 2) существование особого единства с окружающей средой; 3) вхождение исследуемой системы в качестве элемента более высокого порядка (органы, ткани, целостный организм); 4) возможность рассмотрения элементов изучаемой системы в качестве системы более низкого порядка (Петленко В. П., Попов А. С., 1978).

Таким образом, в нашем случае интересен вопрос воздействия космогелиогеофизических факторов на внутреннее взаимодействие (самоорганизацию) элементов функциональной биосистемы. В настоящее время проблему самоорганизации стали относить к разделу новой дисциплины – синергетики. Выдающуюся роль в возникновении теории самоорганизации сыграли труды В. И. Вернадского (1975; 1980). Английский кибернетик У. Р. Эшби (1969) опубликовал одним из первых принципы самоорганизующейся динамической системы с определением самоорганизующейся системы. Ранее, в 1954 г., Б. Фэрли и У. Кларк определили ее в качестве «системы, изменяющей свои основные структуры в зависимости от опыта и окружения» (Герович В. А., 1994).

По У. Р. Эшби (1969) – самоорганизация равносильна спонтанному изменению организации, механизм – выявление своеобразных «скрытых» переменных с открытием строгого детерминизма системы. В общих чертах самоорганизация характеризуется обобщенными свойствами. 1-е свойство – самоорганизация как самостоятельное повышение организованности структуры системы: описывает изменение внутренних связей системы; оценивается в шкале «низкая – высокая организованность» независимо (в общем случае) от внешних критериев. Присуща самосвязующимся системам. 2-е свойство – самоорганизация как самостоятельное улучшение организации поведения системы: описывает изменение внешних связей системы (со средой); оценивается в шкале «плохая – хорошая организация» независимо (в общем случае) от внутреннего механизма ее достижения; синоним «самообучения». Присуща обучающимся системам.

В синергетике дефиниция самоорганизации другая. «Организация» здесь не описывает поведение, а лишь характеризует внутреннюю структуру с точки зрения ее упорядоченности. «Самостоятельность» выражается в спонтанности возникающей организации, в отсутствии единого управляющего органа. Самоорганизацию обеспечивает синергетический механизм локальных самообращенных взаимодействий элементов системы. Существует смешанная модель самоорганизации, основанная на кибернетических и синергетических представлениях. Здесь цель самообучения достигается посредством синергетического механизма. Обратная связь со средой служит источником информации (Герович В. А., 1994). С появлением синергетики появилась возможность исследования биопроцессов самоорганизации и самореорганизации сложнейших целостных биосистем (Каган М. С., 1996).

Термин «синергетика» подчеркивает основную роль коллективных, корреляционно-кооперативных взаимодействий в возникновении и функционировании явлений самоорганизации в различных открытых системах, в нашем случае – организма и его подсистем при рассмотрении человека в качестве части геокосмического пространства.

Цели изучения системы заключаются в исследовании ее функционирования в целом и управления ею внешними и внутренними факторами. Подобными задачами занимается системный анализ. Наиболее близки к системному подходу такие области, как исследования методами многомерной статистики и оптимизация. В нашей работе за определение системы принято следующее: система – множество элементов, характеризующихся связями друг с другом и дополнительным свойством – функцией, не совпадающей или не характеризующейся ни одним из свойств отдельного ее элемента (Губанов В. А., 1988).

3.2. Оптимизация параметров биосистем

Понятие гармонии и оптимизации включает в себя проблему пропорционального деления отрезка – вопрос «золотого сечения». Принципам «золотого сечения» подчиняются параметры гемодинамики, выделительная функция почек, организация генотипа, фенотипические способности к реагированию и суточному ритму, модификационная изменчивость стереотипа биоритмов и реактивности, что связано с ГМП, гравитацией, многообразными связями с окружающей средой (Суббота А. Г., 1994).

Направление развития науки от многочисленных фактов и законов имеет тенденцию к централизации и сведению к нескольким или одному закону. Для естественных наук в центре стоит принцип оптимальности (экстремальности) – утверждение о минимуме (или максимуме) некоторой величины (функционала или целевой функции). Это обстоятельство не случайно, у вариационного принципа экстремума нет соперников (Голицин Г. А., Петров В. М., 1990).

Основные проблемы оптимальности организации биологических систем изложены в ряде работ (Розен Р., 1976; Розен В. В., 1982). Проблема сводится к поиску функционала системы, экстремум которого соответствует поставленной задаче. А задача заключается в соответствии теории и данных физиологических исследований при различных функциональных состояниях, когда оптимальные параметры биосистемы доставляют экстремум определенного функционала (Образцов И. Ф., Ханин М. А., 1989; Лушнов М. С., 1995б; 1997б).

В работах, посвященных биооптимальности, применяются самые различные критерии, например минимума гемодинамических параметров (Cohn D., 1954; 1955), минимума потребления энергии физиологическими системами (Ханин М. А. с соавт., 1978), а также более сложные критерии (Fisher R. A., 1930; Yamashiro S. M., Grodins F. S., 1971). Можно утверждать, что многие законы науки имеют экстремальную форму (Полак Л. С., 1960).

Идея оптимальности, экономии соответствует давнему представлению о совершенстве и целесообразности живой природы (Рашевски Н., 1968). Развивая эти положения, Р. Розен (1976) сумел вывести из этого принципа такие физиологические константы, как оптимальные радиусы и углы ветвления артерий, размеры и форма эритроцитов. Выведен ряд закономерностей: параметры систем дыхания и кровообращения, реакции систем в условиях нормы и патологии, концентрация эритроцитов в крови также оптимальны (Ханин М. А. с соавт., 1978). Из этих принципов выводится целостность работы мозга, объясняющая целый ряд качественных результатов: передачу нервных импульсов, память, восприятие, подсознание, эмоции и интеллект, поведенческие функции организма (Емельянов-Ярославский Л. Б., 1974). При этом принцип экономии энергии совсем не является универсальным, а почти всегда сопровождается дополнительными условиями нормального функционирования физиологических систем (Бать О. Г., Ханин М. А., 1984) или нужд выживания (Розен Р., 1976).

В термине «адаптация» различают два разных смысла: приспособление живого существа к условиям окружающей среды, а при исследовании адаптации рецепторов имеется в виду просто привыкание рецепторов к раздражителю. Полная адаптация вида к условиям среды является равновесным состоянием. Если на организм воздействуют два разных стимула с переключением с одного на другой, то сам он будет поддерживать «автоколебания» с оптимальной частотой. Одним из наиболее интересных следствий автоколебательного характера поведения является «эффект границы», так как граница наиболее информативна (Голицин Г. А., Петров В. М., 1990).

Подавляющее большинство процессов протекают симметрично в правом и левом полушариях. Однако левое полушарие – средоточие рефлексивной и речевой функций, правое – интуитивно-чувственных функций, образного освоения мира, эмоций. Эти последствия специализации для межчеловеческих отношений очень важны (Иванов В. В., 1978). Одно из таких важных последствий для социально-психологической жизни общества заключается в том, что наблюдаются периодические колебательные процессы между господством настроений, типичных для доминирования то левого полушария (20–25 лет), то правого (тоже 20–25 лет) (Маслов С. Ю., 1979; 1983). Такие циклы прослежены строго количественно на материале социально-психологического «климата» общества, а также на материале тех сфер, которые подвержены сильному влиянию этого «климата»: архитектуры, стиля музыки. Причем эти циклы приблизительно совпадают по длительности с одним из основых периодов солнечной активности (22 года).

3.3. Функциональное состояние и системный подход в физиологии

М. В. Фролов (1987) определяет функциональное состояние (ФС) как результат взаимодействия внешней среды и исходных свойств субъекта. Иначе, ФС – совокупность признаков, свойств, функций и качеств субъекта, которые прямо или косвенно характеризуют ту или иную деятельность.

При наличии информации о закономерностях формирования ФС можно использовать свойства состояний с целью их корректировки в нужном направлении. Проблема определения ФС остается актуальной и по настоящее время. Однако до сих пор в дефинициях ФС существуют разночтения. Недостаточно разработаны единые теоретические позиции исследования ФС. На наш взгляд продуктивным могут оказаться системный подход и синергетика. С иерархических позиций рассматриваются комплексы механизмов гомеостаза, функционирующие в оптимальных пределах для различных условий жизнедеятельности. С позиций системного подхода реализация действий (управления) осуществляется функциональной системой на основе системообразующих факторов. Для биологической системы такой основой является конкретный результат ее деятельности (Ухтомский А. А., 1923; 1950; Анохин П. К., 1973; Фролов Б. С., 1987).

Один из механизмов, обусловливающих измерение психических и физиологических функций организма, известен как стресс-реакция или стресс-синдром (Кокс Т., 1981; Бестужев-Лада И. В., 1982; Каспин В. И. с соавт., 1982). Изменение функций организма в соответствии с механизмом стресс-реакции происходит в ответ на действие достаточного по силе стимула (Селье Г., 1960). «Cтресс есть неспецифический ответ организма на любое предъявленное ему требование» в определенной последовательности (Фресс Н., Пиаже Ж., 1970).

Синергетика позволяет выявлять общность закономерностей развития объектов различной природы и уровней организации. Обнаруженное синергетикой сходство закономерностей, описывающих процессы в самых различных областях знаний, позволяет говорить о структурном изоморфизме процессов самоорганизации любых систем (Герд А. С., Коротков В. И., 1996). Сложность и неоднозначность биосферно-космических явлений требует обращения к новому системно-методологическому подходу. Системный подход базируется на средствах, сложившихся в междисциплинарных направлениях анализа данных и распознавания образов, включая секвентивный, кластерный, дискриминантный, бифуркационный методы (Ковалевский И. В., Ковалевская Е. И., 1996).

Серьезное исследование указанных проблем, на наш взгляд, в настоящее время представляется невозможным без комплексного информационно-статистического подхода, включающего непрерывный динамический мониторинг всего комплекса факторов окружающей cреды с хранением и архивированием в компьютерных базах данных физиологических и психологических параметров с целью оценки динамики ФС организма (Лушнов М. С., 1997а; 1997б).

При оценке функционального состояния необходимо учитывать ряд научно-практических положений, важных при исследовании здорового и особенно больного человека: 1) человек рассматривается в качестве биологической системы в положении устойчивого или неустойчивого равновесия в зависимости от его функционального состояния (Чижевский А. Л., 1976); 2) отдельные свойства функций человека оцениваются посредством оптимизационных приемов, основанных на физиологических представлениях оптимальности и лабильности течения процессов организма (Ухтомский А. А., 1950; Шанин Ю. Н. с соавт., 1978); 3) функциональное состояние дифференцируется качественно и/или количественно по нескольким шкалам одновременно (Генкин А. А., Медведев В. И., 1973); 4) оцениваются свойства целевой функции, обусловливающей функциональное состояние прямо или косвенно (Медведев В. И., 1970); 5) учитывается иерархическая совокупность результатов адаптации и гомеостаза в случае взаимодействия между собой физиологических подсистем (Симонов П. В., 1981); 6) при моделировании ФС учитывается учение о стресс-реакции и стресс-синдроме (Селье Г., 1960).

Получение интегральных критериев, описывающих системные реакции человека при адаптации к внешним условиям, является одним из важнейших условий изучения ФС организма.

3.4. Критериальные функции и функционалы биосистем. Множественные корреляции

Среди множества оптимизационных методов встречается довольно ограниченное число методик, способных давать индивидуальные статистические функциональные оценки системы (функционального множества биологических системных параметров). Одна из методик, примененная нами, позволила получить корреляционные системные оценки. Биологический смысл таких моделей основан на представлениях, сформулированных Ю. Н. Шаниным с соавторами (1978) о максимуме корреляционных связей в норме и различной степени их разбалансировки в патологии.

Для всей выборки биосистемы строится корреляционная матрица, которая подвергается специальному преобразованию с использованием процедуры ветвей и границ с выбором оптимального подмножества признаков и оценкой для каждого пациента критериальной функции (КФ) (Narenda P. M., Fukunaga K., 1977). Метод основан на оценке некоторой монотонной функции – КФ от какого-либо биологического множества (A), такой, что если существуют два подмножества A

и A

, причем A

содержится в A

, тогда: C(A

) < C(A

) или C(A

) = C(A

) – что и означает свойство монотонности. Алгоритм построен на вычислении максимальной КФ на основе определенной квадратической формы и на поиске наибольшего набора из n переменных, максимизирующего КФ для всего подмножества, содержащего m признаков. КФ вычисляется через квадратическую форму: C(A

) = (X

)S

(X
<< 1 ... 9 10 11 12 13 14 15 >>
На страницу:
13 из 15